The resident mathematician announced he was better than engineers. There was a life lesson in that.

A bunch of us engineers were sitting together for lunch in a company cubicle when we were interrupted by someone whom the company had hired as a resident mathematician. If any of us ran into something that required mathematics beyond our personal skill sets, this fellow was our go-to guy.

He announced to all of us: "I am better than you."

After we recovered from our collective astonishment, one of us asked what he was talking about.

He replied: "How would you get the first derivative of the arctangent function?"

I held up a mathematics textbook.

"I don't need that," he said. "I know it off the top of my head and you don't. That's why I'm better than you."

For the sake of keeping this text fit for family consumption, I won't go any further into the ensuing commentary except to say that it was quite colorful, but wouldn't you know it, I actually found something later on to ask this mathematician about.

I had an eleven pole filter that had been designed into a digital multimeter. I wanted to know if the roots of the eleventh order polynomial of that filter's transfer function could be found; could they be factored out. The answer I got from the mathematician was "no," but he couldn't tell me why that was the case.

In fact, it was the case. The mathematician was right, but I only learned why later from a biographical article in Scientific American about the French mathematician, Évariste Galois (October 25, 1811 – May 31, 1832) who, if I got this right, had sought to find a generalized method of factoring a polynomial of any order and proved that there was no such general method for polynomials of greater than fifth order. Galois' work was the beginning of what is today called "group theory."

Because our resident mathematician was who he was, because of the offensive attitude he displayed, I didn't really believe him. He had lost his credibility with me and as I later saw, with the others too.

There was a life lesson in that.

(John Dunn is an electronics consultant at Ambertec, P.E., P.C. in Merrick, N.Y., a graduate of The Polytechnic Institute of Brooklyn (BSEE) and of New York University (MSEE) and is a member and former Chairman of The IEEE Consultants Network of Long Island (LICN)).

I had the good fortune to work with a good mathematician in very practical cascaded narrow band filter work.
The problem was that even though he explained it very well I was not good enough to understand it all, let alone retain it much after the project was done.
Like the engineer in the example above, I found a couple of good filter books to help me out when needed.

Different people have different set of specialized skill set and there in nothing wrong in getting their help. To an organization it saves time and money. However, once in while, you may be little better of then go-to guy or an expert. It does not mean that they are no good at all. No one is omnicient. And even experts do make simple mistakes in hurry. But one should not take it so hard.
Another aspect is communication skills. Employing most suitable words and tone is very important. However, again some pople lack it. It this things happen many times, he may not be good in the subject. But with effort, we do get good go-to guy.

A good analyst (engineer, mathmetician, or any other expert) consists of two things:
1. He know his subject matter.
2. He knows how to EFFECTIVELY communicate that knowledge to others. And part of being effective is having a genuine goal and desire to help others gain knowledge instead of being a "show-off."

To that list I would add:
3. He needs to be able to work effectively as a member of a team.
In a modern-day organization, rather than being the "go-to" guy, an employee like this would more likely be on the short list for termination.

I wholeheartedly agree with the above list. We had an Engineer at our company who regularly reduced testers to tears when they dared to “complain” about problems in the system. The man was brilliant, but no one wanted to interact with him and consequently no one wanted him on their team.

okay, so he is good, in fact better....okay I like to see him weld aluminum and solder a stainless steel drum.
we engineers are capable of that too just like that over, our top..
see how a mathematician do that....

Mathematics is superior to Engineering, but Mathematicians are not superior to Engineers.
An Engineer is a Mathematician by nature, the opposite is not necessarily true.

Sounds like a very second-rate maths guy who is compensating with arrogance, a frightfully dangerous combination.
I encountered, indirectly, someone who gave wrong information to a friend about a puzzle in geometry. As best as I could understand it, he was presented the puzzle and, not being clever enough to figure it out on the spot, went on about the theory of tesselations of the plane, blah blah, which dazzled the non-math friend, the latter duly repeating the entirely inapplicable packet in a chatroom. I argued that the maths guy should be ashamed for adopting the defensive and quite-wrong ruse, and instead should have said "I don't know", and then perhaps gone off and figured the thing out (this was the famous problem where triangles that are part of rectangles are assembled in two different ways, to seemingly produce two areas differing by one square unit).
And shame on the math guy here for not knowing a little Galois theory and the implications for general polynomials of degree higher than four. Even if that was not in his field of specialization, it's certainly something to which he'd been exposed and could easily come up in a PhD oral.

No. The implications of Galois theory (among others) are that roots of polynomials of highest degree 4 have solutions that can be expressed as radicals. Five and above this is impossible (in general*). See for example http://en.wikipedia.org/wiki/Quintic_equation
(*although note the extension to "ultraradicals" by Jerrard and to Hermite's use of Jacobi theta functions and associated elliptic modular functions)
There is also a fascinating old book by Klein, "Lectures on the Icosahedron and the solution of equations of the 5th degree". See also the wiki for icosahedron: http://en.wikipedia.org/wiki/Icosahedron,
from which: "The rotational symmetry group of the regular icosahedron is isomorphic to the alternating group on five letters. This non-abelian simple group is the only non-trivial normal subgroup of the symmetric group on five letters. Since the Galois group of the general quintic equation is isomorphic to the symmetric group on five letters, and this normal subgroup is simple and non-abelian, the general quintic equation does not have a solution in radicals."

So, did you find the poles of the 11th order filter? I thought that's what numerical analysis was far.
Anyway ... most of engineering (or any technical field) comes down to knowing what you don't know, and how quickly you can find it out.
Looking it up in a textbook is not only not cheating, it's expected. Though I suppose these days Google is your friend.

The immediate implication that I take from somebody announcing that they are "better than me" is that they are suffering from a swollen ego. Many career mathematicians are better at math than I am, but few of them are also able to design a circuit and teach a fellow worker how to safely run a lathe, which I can do both. I have worked with some mathematicians who were also good engineers, but a few more who were not. Now, if it had been possible to find one of the eleven roots, then finding the others would have been fairly easy, since, by symmetry, we know that the sum of all n nth roots equals to zero. At least, when expressed as complex numbers, it works that way. No, I am not able to produce a proof for that assertion.

Its comforting (but not good) to know that engineers aren't the only ones who can be accused of having the people skills of a porcupine in a crowded swimming pool.
I don't care how good a person is intellectually, if they can't get along with others I'd rather not have them around. A team of good people working together spontaneously is always better than a group of geniuses who don't communicate because they feel others are unworthy of them.

I don't understand how anyone could have such repeatably bad luck with coworkers and supervisors... this sort of thing seems to be a common thread to your writings recently.

Not to go off on the inverse of an arctangent, but the above story reminds me of the joke about the engineer, the physicist, and the mathematician:
A physicist and engineer and a mathematician were sleeping in a hotel room when a fire broke out in one corner of the room. Only the engineer woke up he saw the fire, grabbed a bucket of water and threw it on the fire and the fire went out, then he filled up the bucket again and threw that bucketfull on the ashes as a safety factor, and he went back to sleep. A little later, another fire broke out in a different corner of the room and only the physicist woke up. He went over measured the intensity of the fire, saw what material was burning and went over and carefully measured out exactly 2/3 of a bucket of water and poured it on, putting out the fire perfectly; the physicist went back to sleep. A little later another fire broke out in a different corner of the room. Only the mathematician woke up. He went over looked at the fire, he saw that there was a bucket and he noticed that it had no holes in it; he turned on the faucet and saw that there was water available. He, thus, concluded that there was a solution to the fire problem and he went back to sleep.
;)

The best way to assure that one gets started on the wrong side of everybody is to announce that "I am better than all of you". That is for certain. The only job that I would not attempt to show somebody like that up on would be the removal of un-exploded ordinance, which is an important job. That would be the task that I would leave to the braggart unchallenged.

Agree.
I had to work with one of those types. Head honcho of SW, nobody could even get an Eprom burned without his approval.
I came up with a good workaround - waited until the officious little twerp went on vacation.

EDN's Designer's Guide to Electromagnetic Compatibility, written by Bill Kimmel and Daryl Gerke, provides many tips for minimizing emissions and immunity. It's also a great source for quiz questions.

To save this item to your list of favorite EE Times content so you can find it later in your Profile page, click the "Save It" button next to the item.

If you found this interesting or useful, please use the links to the services below to share it with other readers. You will need a free account with each service to share an item via that service.