Breaking News
Blog

When Will NAND Flash Be Replaced by an Alternative Technology?

NO RATINGS
View Comments: Threaded | Newest First | Oldest First
DrFPGA
User Rank
Blogger
10-12 Years
DrFPGA   4/4/2014 1:38:57 PM
NO RATINGS
To me 10-12 years seems like a very short time to get a new technology in place when the profit margins on existing technologies will be under continued pressure. Where is the $ going to come from to fund significant new technology development, manufacturing plant and other infrastructure expenses... Wowzers!

Or_Bach
User Rank
Rookie
Re: 10-12 Years
Or_Bach   4/4/2014 5:05:17 PM
NO RATINGS
It seems that NAND Flash have many more years of a roadmap. The 3D NAND started mass production with relativly old process node 40nm - 24 layers. It could scale up for over 128 layers and down to the 14/16 nm over time. These represent too many nodes, and accordingly years, to make any reasonable prediction at this time.

resistion
User Rank
CEO
Re: 10-12 Years
resistion   4/4/2014 9:54:16 PM
NO RATINGS
Since they are stacking ONO layers laterally in 3D NAND instead of vertically on floating gate, the lateral scaling of 3D NAND is probably already at/near its limit, but certainly the number of vertical layers is supposed to increase as much as possible. But eventually, the vertical channel gets too long.

resistion
User Rank
CEO
Re: 10-12 Years
resistion   4/4/2014 10:24:14 PM
NO RATINGS
For a pure Flash chip manufacturer, it would be hard to fund (or even motivate) a Flash replacement, but it's easier if you have income from foundry work, other products (like DRAM), or IP.

Ron Neale
User Rank
Blogger
Re: 10-12 Years or more
Ron Neale   4/7/2014 8:41:26 AM
NO RATINGS

I think when the words new memory technology or alternative memory are bandied around they should be qualified with silicon dependant memory (SDM) or silicon independent memory (SIM), with a further sub qualification for SDM of monolithic or multi-chip packaging (MCP).

A silicon independent memory will require more than just the emergence of a new memory technology it would be something akin to the past when solid state replaced the vacuum tube. Although some sort of optical coupling, even optical processing might be able to remove some of the silicon interface workload in MCP it is difficult to see complete silicon independence for any new or emerging memory technology for some long time ahead.

Because of the existing investment in fabrication equipment, interface knowledge, designs and reliability SDM would appear to be the easiest and most likely route, so far that has not provided an obvious near-term solution, e.g PCM, CbRAM, ReRAM etc in more than 10-12 years. It looks as though SST-MRAM might now be moving centre stage with correlated electron devices (Symetrix and 4DS Inc) offering an interesting latest addition to the list of possibles.

I think the best analogy is to consider Flash memory for the electronics industry as like the internal combustion engine of the automotive industry. Along the way a few variations NAND, NOR for the former, like gasoline and diesel versions for the latter but still requires silicon or four wheels respectively to make it useful.

Jim Handy01
User Rank
Blogger
Re: 10-12 Years
Jim Handy01   4/8/2014 4:49:11 PM
NO RATINGS
DrFPGA,


You're right on all of your points but one, and that's the manufacturing plant issue.  It should only take about 2 years to build a manufacturing facility for a technology if you have the process all worked out.  That could be done with technologies that are now in low-volume production: FRAM, PCM, and MRAM.

These technologies can't get cheaper than NAND flash, though, until they move ahead of NAND in process migration, and they aren't even close to that at the moment.

Jim

resistion
User Rank
CEO
Cost goes down with maturity
resistion   4/4/2014 2:36:04 PM
NO RATINGS
No doubt that a new technology would initially have its cost, but mature technologies have had years of cost-reduction methods applied and there is no reason not to include cost-reduction in new technology development as well.

Treating 3D NAND as a "new" technology, when can it get its cost appreciably down? Or will it be accepted anyway after 1Z, even if it is more expensive?

Jim Handy01
User Rank
Blogger
Re: Cost goes down with maturity
Jim Handy01   4/8/2014 4:54:55 PM
NO RATINGS
Resistion,

You hit on the most important point in memory: Nobody wants to pay more for superior performance unless there is absolutely no alternative.  That's why the NOR and SRAM markets have shrunk.  3D will not replace 1Z until it's cheaper than 1Z.  That could take a while.

Jim

resistion
User Rank
CEO
Re: Cost goes down with maturity
resistion   4/8/2014 10:27:31 PM
NO RATINGS
There might still be some tolerance - not all the Flash can be 1Z, presumably the performance would be too bad. Otherwise all the older process generations would have disappeared (though many have).

barunkd
User Rank
Rookie
Re: Cost goes down with maturity
barunkd   4/11/2014 4:29:01 AM
NO RATINGS
Absolutely right Jim. Taking a similar example in main memory segment. HMC is far superior in technology than DDR, but due to cost it has still not been able to replace (and most likely in near future also) DDR.

And the comment is more true in memory market. Memory is perhaps the most price elastic market of all semiconductor device. Cost has the very big say here

Rgards,

Barun

resistion
User Rank
CEO
FEOL still quite expensive
resistion   4/7/2014 8:56:33 PM
NO RATINGS
NAND is still FEOL-intensive, and that is quite expensive in and of itself. A more BEOL-focused technology like RRAM would actually be a more cost-effective memory.

sranje
User Rank
Manager
Thank you for NAND insights
sranje   4/10/2014 6:09:31 AM
NO RATINGS
As usual - very helpful and thoughtful

Many thanks !

Best regards

beinglass
User Rank
Rookie
Planar vs. 3D NAND
beinglass   4/15/2014 9:47:11 PM
NO RATINGS
Shrinking to the 1x, 1y and 1z will become difficult since the number of electrons on the floating gate become smaller and smaller hence the device endurance and reliability will suffer. As none of the previous comment mentioned going 3D id a huge relief in the litho effort of the Fab since we can go back 3-5 generaqtions, a welcoming proposal by the production organization. Of course cost and yield are issues bu tI believe these will be resolved soon.

resistion
User Rank
CEO
Re: Planar vs. 3D NAND
resistion   4/15/2014 11:43:11 PM
NO RATINGS
Jim Handy and I briefly covered 3D NAND a little earlier in another thread. Yes, it would be interesting to see how far it can be developed. I think the key challenge is etching the vias with straight sidewalls to deeper depths.

Top Comments of the Week
August Cartoon Caption Winner!
August Cartoon Caption Winner!
"All the King's horses and all the KIng's men gave up on Humpty, so they handed the problem off to Engineering."
5 comments
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Times on Twitter
EE Times Twitter Feed
Radio
LATEST ARCHIVED BROADCAST
David Patterson, known for his pioneering research that led to RAID, clusters and more, is part of a team at UC Berkeley that recently made its RISC-V processor architecture an open source hardware offering. We talk with Patterson and one of his colleagues behind the effort about the opportunities they see, what new kinds of designs they hope to enable and what it means for today’s commercial processor giants such as Intel, ARM and Imagination Technologies.
Flash Poll