Breaking News
News & Analysis

Gate leakage, down and out?

12/4/2007 03:00 PM EST
5 comments
NO RATINGS
More Related Links
View Comments: Newest First | Oldest First | Threaded View
Phononscattering
User Rank
Rookie
re: Gate leakage, down and out?
Phononscattering   12/5/2007 10:29:10 PM
NO RATINGS
Also an EOT of 0.39nm with a dielectric thickness of 2.4nm requires an average dielectric constant of the gate stack of 25. This would require a crystalline dielectric without interfacial SiO2 layer. While this is not unheard of, it is typically not possible to achieve sufficient channel mobility in a gate stack like that.

Phononscattering
User Rank
Rookie
re: Gate leakage, down and out?
Phononscattering   12/5/2007 10:12:26 PM
NO RATINGS
A leakage current of 1e-12 A/cm² is physically impossible with an insulator thickness of 2.4nm. It would required a material with an unrealistically high band gap. There appear to be factual mistakes in the article.

DBTI
User Rank
Rookie
re: Gate leakage, down and out?
DBTI   12/5/2007 10:02:36 PM
NO RATINGS
10A = 1nm. So 0.39nm = 3.9A, not 390A. This is impressive. If GOI is well controlled this could be a great solution. And I agree that a thinner EOT will improve sub-t leakage as well.

donoman
User Rank
Rookie
re: Gate leakage, down and out?
donoman   12/5/2007 6:21:13 PM
NO RATINGS
CYI-what are you talking about? Being able to use a thinner EOT helps with gate control (short channel effects) as well as reducing gate leakage. Granted, this article is not impressive with an EOT of 390A but I suggest you don't mislead others with a lopsided view on gate dielectrics. Love, donoman

CYI
User Rank
Rookie
re: Gate leakage, down and out?
CYI   12/4/2007 10:30:59 PM
NO RATINGS
While it is true that high-k materials will virtually eliminate gate leakage, the use of these materials will not significantly reduce subthreshold leakage which will continue to account for a significant percentage of a chip's total power consumption. At 90nm, leakage power accounts for about 30% of a chip's total power and almost all of the leakage power is due to subthreshold leakage, as opposed to gate leakage. At 65nm, over 50% of a chip's power is due to leakage and about 60-70% is due to subthreshold leakage. At 45nm, gate leakage would have grown to overtake subthreshold leakage. With the use of high-k materials, the threat of gate leakage is tamed. However, subthreshold leakage will continue to be a critical parametric yield-limiting factor at 45nm and beyond.

Flash Poll
Radio
LATEST ARCHIVED BROADCAST
Join our online Radio Show on Friday 11th July starting at 2:00pm Eastern, when EETimes editor of all things fun and interesting, Max Maxfield, and embedded systems expert, Jack Ganssle, will debate as to just what is, and is not, and embedded system.
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Times on Twitter
EE Times Twitter Feed
Top Comments of the Week