Breaking News
News & Analysis

ARM, TSMC lead Intel in SoC, says CEO East

7/26/2012 11:44 AM EDT
View Comments: Oldest First | Newest First | Threaded View
<<   <   Page 4 / 4
User Rank
re: ARM, TSMC lead Intel in SoC, says CEO East
Adele.Hars   8/13/2012 3:21:43 PM
At the end of this article, Peter notes, "ARM processor cores are also supported on a 28-nm fully depleted SOI (FDSOI) process developed by STMicroelectronics NV and being transferred to foundry GlobalFoundries Inc. (Milpitas, Calif.) that is expected to subsequently shrink to 20-nm." There was some dicussion in the comments here re: multiVT. Thought you might be interested to know what ST has to say about that for its new 28nm FD-SOI ARM-based SOCs:"Planar FD technology allows several methods for setting the threshold voltage VT, including engineering the gate stack work function, trimming the gate length and other process engineering techniques. Thanks to this, STMicroelectronics’ 28FDSOI technology is capable of offering 3 VTs (HVT, RVT, LVT), as in traditional bulk CMOS technologies." (see Also, for a succinct summary of Prof. Fossum's view on SOI for FinFETs (from a few yrs ago, but I believe still valid), see his ASN article He concludes:"...the underlying BOX effectively suppresses the source-drain leakage current under the gated fin-body (see the figure). Bulk Si would require heavy doping to suppress this current, as well as to effect reasonable device isolation. But one of our goals with MuGFETs [note: FinFETs are part of the multigate/MuGFET family] is to get away from doping and the random effects it causes: the only pragmatic way to do that is to put the UTB [ultrathin body] FinFET on SOI."

<<   <   Page 4 / 4
Top Comments of the Week
August Cartoon Caption Winner!
August Cartoon Caption Winner!
"All the King's horses and all the KIng's men gave up on Humpty, so they handed the problem off to Engineering."
Like Us on Facebook Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Times on Twitter
EE Times Twitter Feed
David Patterson, known for his pioneering research that led to RAID, clusters and more, is part of a team at UC Berkeley that recently made its RISC-V processor architecture an open source hardware offering. We talk with Patterson and one of his colleagues behind the effort about the opportunities they see, what new kinds of designs they hope to enable and what it means for today’s commercial processor giants such as Intel, ARM and Imagination Technologies.
Flash Poll