Breaking News
News & Analysis

Intel sees quad-patterned path to 10-nm chips

9/13/2012 03:00 AM EDT
20 comments
NO RATINGS
Page 1 / 2 Next >
View Comments: Newest First | Oldest First | Threaded View
Page 1 / 2   >   >>
seaEE
User Rank
Manager
re: Intel sees quad-patterned path to 10-nm chips
seaEE   9/21/2012 2:29:16 AM
NO RATINGS
There are a few who hold that lesse actually is Morre.

michigan0
User Rank
Manager
re: Intel sees quad-patterned path to 10-nm chips
michigan0   9/21/2012 1:36:57 AM
NO RATINGS
In theory Intel’s Trigate FinFETs can extend to 10nm beyond as long as lithography can permit because for FinFETs to be fully depleted to suppress the leakage current or short channel effects the fin width (W) less than gate length (Lg) is only required. For 10nm node and below, however, new physical phenomena not seen in wide fin W will occur. The fin W at bottom of the fin for 10nm node and below may approach 6nm or less and 5nm at top of the fin. However, for the fin W with such an extremely thin 6nm may hit the CMOS scaling wall or the end of the Moore’s Law because of the quantum mechanical effects imposed by the structural quantum confinement. It means in simple terms that the electrons within such extremely thin 6nm fin W do not behave like classical particles any more, but instead act as waves. As a result, drift and diffusion based classical semiconductor physics is no longer applicable. Instead, the electron behavior is now described by the quantum mechanical physics based Schrodinger’s wave equations and is subjected to Heisenberg’s uncertainty principle. The impact of such quantum confinement on the electrical characteristics is a significant increase in threshold voltage Vt due to the mobility degradation caused by decrease in the inversion layer thickness. The Vt increase depends on how thin the fin W is. But this adds to the variation in Vt due to the short channel effect with varying Lg. The other more critical effect is very large variations or uncertainties in transistor transfer characteristics such as Vt, Id/Vg, ID/Vd, DIBL, SS (sub-threshold slop), and SRAM noise. These are physical limits derived from quantum mechanical effects, limiting to the channel length to 10nm node with fin W of 6nm. Process variations not considered here could further adversely impact the variability of finFETs electrical characteristics. Therefore, in my opinion the 10 nm node with fin W 6nm or less will not be manufacturable or the end of CMOS scaling. S Kim

resistion
User Rank
CEO
re: Intel sees quad-patterned path to 10-nm chips
resistion   9/20/2012 4:03:19 PM
NO RATINGS
40 nm metal pitch means ~14 nm contacts. That's pretty small, too small even for the NXE:3300 EUV tools.

resistion
User Rank
CEO
re: Intel sees quad-patterned path to 10-nm chips
resistion   9/19/2012 5:48:58 AM
NO RATINGS
For the cost-effective part to make sense, we need the half-pitch or the distance between metal wires to shrink, to enable more transistor connections per unit area. If this distance does not shrink, but only a particular feature shrinks, it could actually add process complexity and some cost.

Ryan Tennill
User Rank
Rookie
re: Intel sees quad-patterned path to 10-nm chips
Ryan Tennill   9/17/2012 5:36:40 PM
NO RATINGS
I believe that this is a fairly standard tactic. The process node only identifies the smallest feature that can be reliably resolved and patterned. There shouldn't be any roadblock to making a 90nm sized transistor in 20nm but I'm not a chip designer. Anyone out there that can comment?

I_B_GREEN
User Rank
Rookie
re: Intel sees quad-patterned path to 10-nm chips
I_B_GREEN   9/17/2012 5:25:44 PM
NO RATINGS
When Morres law becomes lesse's law?

I_B_GREEN
User Rank
Rookie
re: Intel sees quad-patterned path to 10-nm chips
I_B_GREEN   9/17/2012 5:24:59 PM
NO RATINGS
One way forward is for only the parts of the chip that need the smaller geometries be built with the slower litho processes. I have not seen any discussion of this. it is always xxnm

Les_Slater
User Rank
CEO
re: Intel sees quad-patterned path to 10-nm chips
Les_Slater   9/15/2012 1:55:32 PM
NO RATINGS
Pipelining larger processing chunks to minimize communications might be a way forward as we try to scale performance. I think we need to start getting serious about coding efficiencies.

Ryan Tennill
User Rank
Rookie
re: Intel sees quad-patterned path to 10-nm chips
Ryan Tennill   9/15/2012 12:17:17 AM
NO RATINGS
Slowed scaling just means that more emphasis has to be put on other aspects of the design. We won't be able to rely on just buying the latest and greatest piece of silicon. Personally I think this is going to be great motivation for better understanding of hardware and the implications of poor coding/software design.

resistion
User Rank
CEO
re: Intel sees quad-patterned path to 10-nm chips
resistion   9/14/2012 11:44:07 PM
NO RATINGS
Around 10 nm, you cannot merely have a radically new technology come in for one area but a whole package of technologies needed for devices, interconnect, etc. Plus we are now at the scale of electron mean free paths.

Page 1 / 2   >   >>
Most Recent Comments
MeasurementBlues
 
GSMD
 
rick merritt
 
rick merritt
 
resistion
 
antedeluvian
 
baybal
 
antedeluvian
 
antedeluvian
Flash Poll
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Times on Twitter
EE Times Twitter Feed
Top Comments of the Week