Breaking News
News & Analysis

ARM rates FDSOI process as "good technology"

2/5/2013 04:30 PM EST
29 comments
NO RATINGS
More Related Links
View Comments: Newest First | Oldest First | Threaded View
<<   <   Page 2 / 3   >   >>
de_la_rosa
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
de_la_rosa   2/7/2013 9:37:15 PM
NO RATINGS
There is no such thing as 14 nm. It will never happen.

thesoiguru
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
thesoiguru   2/7/2013 1:49:08 PM
NO RATINGS
Adele, Here is calculation of very large extra capacitance with your recommended "thin 25nm box" to solve self heating. Updating what we did 5 years ago and using your thin 25nm BOX recommendation. Mean n or p-well area size is 100um^2 for a 9 track library at 28nm design (typical for low power design) For 28nm mean transistor gate oxide is 1.9nm, gate length = 30nm and transistor Width =100nm Result is (for 25nm BOX) back gate parasitic C is about 2500 times larger than intrinsic gate capacitance for the thin box you recommend check the math (100 *1.9)/ (.03*.1 *25.0) = 2533 that is a very very larger extra C to switch (often switched at very large back gate of 1 to 2V ) so that adds a lot of extra power draw. Pure waist of power without doing useful work and we found block with low activity had higher power in FDSOI with thin box due to this large parasitic C. So I agree thin box of 25nm helps thermal resistance but that adds too much extra C and removes FDSOI power advantage due to wasted power charging/discharging back gate. Parasitic C also is on each drain node with this thin of a box as well. ...time to move on from SOI work

thesoiguru
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
thesoiguru   2/6/2013 11:52:16 PM
NO RATINGS
thin box 25nm add very very very very very large extra bottom capacitance to each circuit block. Very very very large back gate area. When we switched that at 1 to 2V with any activity factor, power increased for FDSOI with thin box. I used to work on this and even I have moved on.

thesoiguru
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
thesoiguru   2/6/2013 11:49:15 PM
NO RATINGS
TSMC had a major program on PDSOI/FDSOI and partnered with freescale during the past decade. All that work stopped many years ago due to the issues raised. SOI self heating is perhaps well understood by some but not understood by foundry customers. Plus even if I accept its well understood (and its not) none of the ~$20B worth of physical IP qualified by the end of 2013 on 28nm took self heating into account so all that would need to be re-designed and re-qualified: correct? please tell me where I am in error ....Many blocks have high activity factors: correct? ....and after switching....these blocks slow down on FDSOI: correct? ...,.my IP block needs to be redesigned and requalified? correct?

Adele.Hars
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
Adele.Hars   2/6/2013 11:01:05 PM
NO RATINGS
Also, specifically to ST's flavor of ultra-thin body & box (UTBB) FD-SOI, Giorgio Cesana recently wrote: "- The Buried Oxide (BOX) is extremely thin (only 25nm thick in 28nm technology), offering significantly less thermal resistance; - The big diodes, the drift MOS, the vertical bipolar, some resistors… are all implemented on the “hybrid” bulk part, eliminating even the thin BOX below them." http://www.advancedsubstratenews.com/2013/02/sts-cesana-further-explains-fd-soi-biasing-more-in-on-line-discussions-and-linkedin-groups/

Adele.Hars
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
Adele.Hars   2/6/2013 10:36:12 PM
NO RATINGS
There is no history effect in FD-SOI. Regarding self-heating, IBM Device Chief Designer Ed Nowak addressed self-heating & SOI (he was talking about FinFET, but cites planar SOI) a few weeks ago. He said, "Self-heating in SOI FinFETs is very similar to that in planar SOI MOSFETs, and as such, the issues and solutions are well understood at a practical product-applications level. For digital circuits, self-heating is not a consideration, as the short-transient energy dissipated from a single transition is absorbed by the heat capacity of the device with a negligible temperature rise. For circuits in which duty factors are sufficiently high, well-established CAD techniques from planar SOI offer solutions. A narrow sliver of silicon connecting a bulk FinFET to the substrate does reduce the degree of self-heating, but similar CAD requirements in product design remain. Other aspects surrounding self-heating include effects on device and interconnect aging, and here again, the techniques practiced over several generations of planar SOI enable design capability to assure the required product reliability in the field." (http://www.advancedsubstratenews.com/2012/11/ibm-why-fin-on-oxide-foxsoi-is-well-positioned-to-deliver-optimal-finfet-value/).

thesoiguru
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
thesoiguru   2/6/2013 8:09:51 PM
NO RATINGS
Other major issues is circuit self heating. This complicates design flow and IP block. Self heating causes transistor speed and leakage to be different based on past switching history. This is why Intel is using bulk finfet vs FDSOI or SOI finfet. Why I think Intel dropped FDSOI. Intel solved SOI heat by using bulk so heat all goes to bottom of wafer. Very smart of Intel.

the_floating_ gate
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
the_floating_ gate   2/6/2013 7:54:03 PM
NO RATINGS
never mind - I clicked on the wrong link "IBS has been in the business of modeling and analyzing the impact of technology choices for clients in the semiconductor and related industries for over 20 years. Our robust approach has stood the test of time, enabling us to predict the economic impact of such decisions with a high degree of accuracy." Intel runs multiple fabs and I am sure they (Intel) have n internal group that studies/develops very detailed cost comparision models. "The time to reach defect density-related yields with allowance impact of parametric yields is estimated to be 12 to 18 months for FD-SOI versus 24 to 36 months for FinFETs." Do you think 24 to 36 months would apply to Intel? what would happen to the results of the model in case you plug in a 12 to 18 months for bulk ?

Mrchipguy
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
Mrchipguy   2/6/2013 7:53:47 PM
NO RATINGS
My judgment is different but I I welcome your insight on these issues. On your points (1) SEH and MEMC have no meaningful FDSOI wafer supply as we speak. They are only on "paper" SOI" suppliers. I think the market data suggest this as AMD still pays extra $500? per SOI wafer after 10 years of production since SEH and MEMC have no SOI capacity. That extra price is a non-starter for mobile market. (2) Doing "hybridization zones" to solve the ESD and HV devices circuits issues adds process cost and yield issues. Etching off the thin Si and Oxide layer removes the isolation layer, Thus device to device isolation now requires a deep trench to be added back into the process flow into these "hybridization zones". A process nightmare. (My guess is Handel missed this point in his cost study). Next on hybridization zones since regions were etched off my wafer so by definition my wafer is NOT planar (i.e. not flat) for gate patterning or for entire front-end lithography. Having a not planar front end is another non starter due to lithography tool depth of field and Gate patterning would be very poor leading to poor yield. Lastly you did not comment on the issues on restrictions on multi -threshold voltages. Looks to me to be yet another non-starter. FDSOI have been a device options for 10 years. I think these are the reasons.

the_floating_ gate
User Rank
Rookie
re: ARM rates FDSOI process as "good technology"
the_floating_ gate   2/6/2013 7:18:22 PM
NO RATINGS
error 404 page not found I am really curious about this cost comparision model I don't believe there is no defined cost saving because you compare variable cost (SoC wafers) versus fixed cost due to additional capex required due to using bulk I am curious about the assumptions in this model

<<   <   Page 2 / 3   >   >>
August Cartoon Caption Winner!
August Cartoon Caption Winner!
"All the King's horses and all the KIng's men gave up on Humpty, so they handed the problem off to Engineering."
5 comments
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Times on Twitter
EE Times Twitter Feed
Flash Poll
Radio
LATEST ARCHIVED BROADCAST
David Patterson, known for his pioneering research that led to RAID, clusters and more, is part of a team at UC Berkeley that recently made its RISC-V processor architecture an open source hardware offering. We talk with Patterson and one of his colleagues behind the effort about the opportunities they see, what new kinds of designs they hope to enable and what it means for today’s commercial processor giants such as Intel, ARM and Imagination Technologies.