Design Con 2015
Breaking News
News & Analysis

Slideshow: IBM outlines fab future beyond FinFETs

It's double vision going forward
2/12/2013 02:45 PM EST
28 comments
NO RATINGS
1 saves
< Previous Page 2 / 6 Next >
More Related Links
View Comments: Newest First | Oldest First | Threaded View
Page 1 / 3   >   >>
kjdsfkjdshfkdshfvc
User Rank
Rookie
re: Slideshow: IBM outlines fab future beyond FinFETs
kjdsfkjdshfkdshfvc   2/19/2013 2:32:22 PM
NO RATINGS
Anyone see this??? http://bit.ly/dI3hcF

resistion
User Rank
CEO
re: Slideshow: IBM outlines fab future beyond FinFETs
resistion   2/19/2013 11:44:19 AM
NO RATINGS
k1 much lower now, for a while. The issue is you can't produce a good image with only a few photons or electrons per sq. nm.

double-o-nothing
User Rank
Rookie
re: Slideshow: IBM outlines fab future beyond FinFETs
double-o-nothing   2/19/2013 8:03:43 AM
NO RATINGS
The Rayleigh resolution limit (k1=0.61) of ASML's EUV tool (NA=0.33) is 25 nm. So by the time they use for 7 nm, it would need the same OPC and enhancement tricks used for 193 nm immersion today. But EUV was originally justified as a way to avoid these tricks. In that sense, it has already failed its promise.

de_la_rosa
User Rank
Rookie
re: Slideshow: IBM outlines fab future beyond FinFETs
de_la_rosa   2/18/2013 3:11:08 PM
NO RATINGS
too many fanciful ideals but none are ever realized. At least electron beam is proven in terms of mask manufacturing. How long before old EUV/DUV can be challenged seriously?

resistion
User Rank
CEO
re: Slideshow: IBM outlines fab future beyond FinFETs
resistion   2/18/2013 12:18:22 AM
NO RATINGS
With sidewall gate thickness, ~10 nm seems constrained even.

michigan0
User Rank
CEO
re: Slideshow: IBM outlines fab future beyond FinFETs
michigan0   2/17/2013 9:48:39 PM
NO RATINGS
There are two competitive semiconductor technologies today: FD-FinFETs by Intel and FDSOI by IBM. Major difference is scalability. Based on the semiconductor device physics theory, the FDSOI channel thickness required to suppress transistor leakage current is 7nm for 22nm-node, 4nm for 14nm-node, 3nm for 10nm-node, and 2nm for 7nm-node. Meanwhile, for FD-FinFETs the fin width (equivalent to channel thickness) required is 22nm for 22nm-node, 14nm for 14nm-node, 10nm for 10nm-node, and 7nm for 7nm-node or fin width = gate length, Lg. What a large difference favoring FinFETs! For the 22nm-node FDSOI the channel thickness of 7nm is required while for 22nm FinFETs the fin width as large as 22nm is required to suppress transistor leakage current. That is why Intelís 22nm FinFETs are in high Volume manufacturing for almost two years, and 14nm will be manufactured at 2014, but FDSOI at 22nm and below will not be manufacturable because Soitec canít deliver such thin 7nm, 4nm, 3nm and 2nm FDSOI. What Soitec can deliver today is high volume manufacturing of 28nm SOI wafers with minimum 12nm SOI and 25nm buried oxide. FinFETs are not dependent on Soitec wafers. IBM Patton predicts the next big thing after FinFETs will be carbon nanotubes. But he doesnít say at what technology node FinFETs will end? Intel Mark Bohr said FinFETs can be extended to the end of scaling. I disagree with Mark. In my opinion it is plausible to manufacture the fin width equal to 7nm, but not below because of the quantum confinement induced device variability. The manufacturability of the 7nm carbon nanotube with possibly 3nm or less nanotube diameter has not been demonstrated yet. The other critical issues are self-heating, source/drain resistance and quantum confinement effects. Skim

resistion
User Rank
CEO
re: Slideshow: IBM outlines fab future beyond FinFETs
resistion   2/17/2013 2:29:43 PM
NO RATINGS
These subwavelength optical confinement activities are related to plasmons. The surface plasmon polariton modes in metamaterials is the source of negative refraction. But plasmons have their own well-known limits.

jaybus0
User Rank
CEO
re: Slideshow: IBM outlines fab future beyond FinFETs
jaybus0   2/17/2013 2:00:20 PM
NO RATINGS
I think that is the reason for the interest in silicon photonics. A group at Northwestern has made a bow-tie shaped 3D metamaterial nanocavity with a negative index of refraction and demonstrated a laser that defies the diffraction limit of light, emitting coherent IR wavelength light from a cavity structure that is much smaller than the wavelength. This shouldn't be possible either, but it is. Sometimes we think we know, based on the best available science, only to find out later that the science wasn't quite right. Nano-photonics is at this stage, just now finding oddities in optical principles that have been considered sacrosanct since the 19th century. If photonic chips can be built with the same CMOS process, and it looks like they can, then I think we will be using photons instead of electrons before 2 nm is reached. Yet there remains the possibility that the as of yet untested predictions are not quite accurate, so we won't know for certain where the quantum limit is until we can actually reach it and the theoretical physics versus experimental physics debates are settled.

resistion
User Rank
CEO
re: Slideshow: IBM outlines fab future beyond FinFETs
resistion   2/15/2013 11:34:07 AM
NO RATINGS
It's an industry-wide practice that is losing or has already lost its meaning, there is nothing as small as 7 nm there.

de_la_rosa
User Rank
Rookie
re: Slideshow: IBM outlines fab future beyond FinFETs
de_la_rosa   2/14/2013 11:06:18 PM
NO RATINGS
do you know why they call it 7nm? is that a single line feature in isolation? If so, what use is a feature in isolation? I mean surely half pitch is the only real measure of resolution?

Page 1 / 3   >   >>
Radio
LATEST ARCHIVED BROADCAST
EE Times Senior Technical Editor Martin Rowe will interview EMC engineer Kenneth Wyatt.
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Times on Twitter
EE Times Twitter Feed
Flash Poll