Breaking News
Design How-To

Electrically-aware design improves analog/mixed-signal productivity

Electrically-aware, “in design” verification
NO RATINGS
< Previous Page 3 / 4 Next >
More Related Links
View Comments: Newest First | Oldest First | Threaded View
LJohnso58
User Rank
Author
re: Electrically-aware design improves analog/mixed-signal productivity
LJohnso58   11/1/2012 6:47:26 PM
NO RATINGS
While this article is focused on the chip creation process, it is equally applicable to the board level creation process, also at the advanced nodes. High density designs in this arena also need electrical awareness from top to bottom. EDA vendors are starting to address this with integrated tool suites incorporating schematic, simulation, PCB and documenation all rolled into one. These tools don't go far enough yet. We routinely work at geometries on the PCB that once were reserved for silicon. We have mixed signal and have to do current density analysis as well as thermal flow analysis. SI analysis is also an integral part of PCB layout and unfortunately, very few DRC tools understand how to check for unbroken return paths, proper termination placement and unexpected radiation. Parasitics from the layout need to be extracted and moved back to the simulation environment to tighten the design so it can be adjusted prior to finalization. Gone are the days when we can just throw a design over the wall to the next step in the process. More and more, the entire vertical process belongs in the hands of a single engineer, and the tools need to support that approach. As no engineer can be expected to know and comprehend all the technologies that may appear on a board,a team is now divided horizontally, so the tools need to permit collaborative efforts. Such tools are just starting to emerge, but not all are on the band wagon. At this time, only a small percentage of project absolutely fall into this category, but as time moves on, these sorts of things will become the norm. Just think of the many tools we have for board and system design that used to be the province of silicon designers. Perhaps its time for that lag to disappear.

Guru of Grounding
User Rank
Author
re: Electrically-aware design improves analog/mixed-signal productivity
Guru of Grounding   11/1/2012 6:45:28 PM
NO RATINGS
Although this piece is so full of "marketspeak" that I needed to translate every sentence to get the drift, the point is an excellent one. Those of us who work in the low-level, wide dynamic-range analog world called "audio" learned long ago that "auto-routing" circuit boards leads most often to disaster. Given the generally poor state of analog skill, an auto-router that embraced common-impedance coupling, magnetic loop areas, and electric field coupling could eliminate thousands of badly-designed products. In audio, most of these bad designs pass bench tests but have horrible problems when connected into real-world systems where power-line noise and significant shield currents exist. I dub many of these "sensitive" designs as "power-line primadonnas".

Ron.Koths
User Rank
Author
re: Electrically-aware design improves analog/mixed-signal productivity
Ron.Koths   11/1/2012 3:37:43 PM
NO RATINGS
I couldn't agree more, why can't my layout software show me a 3D projection with lines of force or a colored cloud representing the magnetic field of the trace I'm laying down, as I route it.

Most Recent Comments
michigan0
 
SteveHarris0
 
realjjj
 
SteveHarris0
 
SteveHarris0
 
VicVat
 
Les_Slater
 
SSDWEM
 
witeken
Most Recent Messages
9/25/2016
4:48:30 PM
michigan0 Sang Kim First, 28nm bulk is in volume manufacturing for several years by the major semiconductor companies but not 28nm FDSOI today yet. Why not? Simply because unlike 28nm bulk the LDD(Lightly Doped Drain) to minimize hot carrier generation can't be implemented in 28nm FDSOI. Furthermore, hot carrier reliability becomes worse with scaling, That is the major reason why 28nm FDSOI is not manufacturable today and will not be. Second, how can you suppress the leakage currents from such ultra short 7nm due to the short channel effects? How thin SOI thickness is required to prevent punch-through of un-dopped 7nm FDSOI? Possibly less than 4nm. Depositing such an ultra thin film less then 4nm filum uniformly and reliably over 12" wafers at the manufacturing line is extremely difficult or not even manufacturable. If not manufacturable, the 7nm FDSOI debate is over!Third, what happens when hot carriers are generated near the drain at normal operation of 7nm FDSOI? Electrons go to the positively biased drain with no harm but where the holes to go? The holes can't go to the substrate because of the thin BOX layer. Some holes may become trapped at the BOX layer causing Vt shift. However, the vast majority of holes drift through the the un-dopped SOI channel toward the N+Source,...

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Like Us on Facebook
EE Times on Twitter
EE Times Twitter Feed