Breaking News
Comments
Newest First | Oldest First | Threaded View
Phononscattering
User Rank
Author
re: Gate leakage, down and out?
Phononscattering   12/5/2007 10:29:10 PM
NO RATINGS
Also an EOT of 0.39nm with a dielectric thickness of 2.4nm requires an average dielectric constant of the gate stack of 25. This would require a crystalline dielectric without interfacial SiO2 layer. While this is not unheard of, it is typically not possible to achieve sufficient channel mobility in a gate stack like that.

Phononscattering
User Rank
Author
re: Gate leakage, down and out?
Phononscattering   12/5/2007 10:12:26 PM
NO RATINGS
A leakage current of 1e-12 A/cm² is physically impossible with an insulator thickness of 2.4nm. It would required a material with an unrealistically high band gap. There appear to be factual mistakes in the article.

DBTI
User Rank
Author
re: Gate leakage, down and out?
DBTI   12/5/2007 10:02:36 PM
NO RATINGS
10A = 1nm. So 0.39nm = 3.9A, not 390A. This is impressive. If GOI is well controlled this could be a great solution. And I agree that a thinner EOT will improve sub-t leakage as well.

donoman
User Rank
Author
re: Gate leakage, down and out?
donoman   12/5/2007 6:21:13 PM
NO RATINGS
CYI-what are you talking about? Being able to use a thinner EOT helps with gate control (short channel effects) as well as reducing gate leakage. Granted, this article is not impressive with an EOT of 390A but I suggest you don't mislead others with a lopsided view on gate dielectrics. Love, donoman

CYI
User Rank
Author
re: Gate leakage, down and out?
CYI   12/4/2007 10:30:59 PM
NO RATINGS
While it is true that high-k materials will virtually eliminate gate leakage, the use of these materials will not significantly reduce subthreshold leakage which will continue to account for a significant percentage of a chip's total power consumption. At 90nm, leakage power accounts for about 30% of a chip's total power and almost all of the leakage power is due to subthreshold leakage, as opposed to gate leakage. At 65nm, over 50% of a chip's power is due to leakage and about 60-70% is due to subthreshold leakage. At 45nm, gate leakage would have grown to overtake subthreshold leakage. With the use of high-k materials, the threat of gate leakage is tamed. However, subthreshold leakage will continue to be a critical parametric yield-limiting factor at 45nm and beyond.



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Most Recent Comments
Like Us on Facebook
Special Video Section
Protecting sensitive electronic circuitry from voltage ...
09:45
Watch as a web server authenticates or rejects a water ...
Protecting sensitive electronic circuitry from voltage ...
Watch as a web server authenticates or rejects a water ...
Protecting sensitive electronic circuitry from voltage ...
Power can be a gating factor in success or failure of ...
Get to market faster and connect your next product to the ...
00:44
See how microQSFP is setting a new standard for tomorrow’s ...
The LTC3649 step-down regulator combines key features of a ...
Once the base layer of a design has been taped out, making ...
In this short video we show an LED light demo to ...
The LTC2380-24 is a versatile 24-bit SAR ADC that combines ...
In this short video we show an LED light demo to ...
02:46
Wireless Power enables applications where it is difficult ...
07:41
LEDs are being used in current luxury model automotive ...
With design sizes expected to increase by 5X through 2020, ...
01:48
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27