Breaking News
Comments
Newest First | Oldest First | Threaded View
Phononscattering
User Rank
Rookie
re: Gate leakage, down and out?
Phononscattering   12/5/2007 10:29:10 PM
NO RATINGS
Also an EOT of 0.39nm with a dielectric thickness of 2.4nm requires an average dielectric constant of the gate stack of 25. This would require a crystalline dielectric without interfacial SiO2 layer. While this is not unheard of, it is typically not possible to achieve sufficient channel mobility in a gate stack like that.

Phononscattering
User Rank
Rookie
re: Gate leakage, down and out?
Phononscattering   12/5/2007 10:12:26 PM
NO RATINGS
A leakage current of 1e-12 A/cm² is physically impossible with an insulator thickness of 2.4nm. It would required a material with an unrealistically high band gap. There appear to be factual mistakes in the article.

DBTI
User Rank
Rookie
re: Gate leakage, down and out?
DBTI   12/5/2007 10:02:36 PM
NO RATINGS
10A = 1nm. So 0.39nm = 3.9A, not 390A. This is impressive. If GOI is well controlled this could be a great solution. And I agree that a thinner EOT will improve sub-t leakage as well.

donoman
User Rank
Rookie
re: Gate leakage, down and out?
donoman   12/5/2007 6:21:13 PM
NO RATINGS
CYI-what are you talking about? Being able to use a thinner EOT helps with gate control (short channel effects) as well as reducing gate leakage. Granted, this article is not impressive with an EOT of 390A but I suggest you don't mislead others with a lopsided view on gate dielectrics. Love, donoman

CYI
User Rank
Rookie
re: Gate leakage, down and out?
CYI   12/4/2007 10:30:59 PM
NO RATINGS
While it is true that high-k materials will virtually eliminate gate leakage, the use of these materials will not significantly reduce subthreshold leakage which will continue to account for a significant percentage of a chip's total power consumption. At 90nm, leakage power accounts for about 30% of a chip's total power and almost all of the leakage power is due to subthreshold leakage, as opposed to gate leakage. At 65nm, over 50% of a chip's power is due to leakage and about 60-70% is due to subthreshold leakage. At 45nm, gate leakage would have grown to overtake subthreshold leakage. With the use of high-k materials, the threat of gate leakage is tamed. However, subthreshold leakage will continue to be a critical parametric yield-limiting factor at 45nm and beyond.



EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Max Maxfield

Fist Bumps & the Zombie Apocalypse
Max Maxfield
25 comments
Are you concerned about the possibility of a Zombie Apocalypse or do you scoff at the thought of such an eventuality? If the latter, would you be surprised to hear that the US military has ...

Rishabh N. Mahajani, High School Senior and Future Engineer

Future Engineers: Don’t 'Trip Up' on Your College Road Trip
Rishabh N. Mahajani, High School Senior and Future Engineer
8 comments
A future engineer shares his impressions of a recent tour of top schools and offers advice on making the most of the time-honored tradition of the college road trip.

Larry Desjardin

Engineers Should Study Finance: 5 Reasons Why
Larry Desjardin
41 comments
I'm a big proponent of engineers learning financial basics. Why? Because engineers are making decisions all the time, in multiple ways. Having a good financial understanding guides these ...

Karen Field

July Cartoon Caption Contest: Let's Talk Some Trash
Karen Field
151 comments
Steve Jobs allegedly got his start by dumpster diving with the Computer Club at Homestead High in the early 1970s.

Top Comments of the Week
Flash Poll
Like Us on Facebook
EE Times on Twitter
EE Times Twitter Feed

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)