Breaking News
Comments
Newest First | Oldest First | Threaded View
LarryM99
User Rank
Author
re: IBM racetrack memory enters home stretch
LarryM99   12/27/2010 4:24:22 PM
NO RATINGS
Oddly enough, the recession can be good for technologies like this. Back in the boom times this kind of stuff would have been rushed into production before it was ready. On the other hand, for the last few years technology has been allowed to fully develop. Some things can't be rushed. Larry M.

resistion
User Rank
Author
re: IBM racetrack memory enters home stretch
resistion   12/25/2010 7:21:28 AM
NO RATINGS
how can it be home stretch? it looks like it hasn't it even started to be serious yet!

selinz
User Rank
Author
re: IBM racetrack memory enters home stretch
selinz   12/24/2010 2:00:52 AM
NO RATINGS
This same group was on the cusp of bringing magnetic bubble technology to fruition in 81ish. A big issue was scaling the very complex and exotic Liquid phase epitaxy process on expensive garnet wafers. Let's hope for no such problems here.

wilber_xbox
User Rank
Author
re: IBM racetrack memory enters home stretch
wilber_xbox   12/24/2010 12:54:18 AM
NO RATINGS
thanks for nice research report. It will be even better to attach a link to either some recent publications or a report containing detailed work. I actually did not understand "The key advantage of racetrack memories is that they do not move atoms—that is why flash memory, ferroelectric and even resistive memories wears out, because they are disrupting the state of matter," part very much.

krisi
User Rank
Author
re: IBM racetrack memory enters home stretch
krisi   12/23/2010 11:00:30 PM
NO RATINGS
Stuart Parkin will be giving a talk on this topic at CMOS Emerging Technologies in Whistler in 2011, here is the link to the program: http://www.cmoset.com/uploads/2011_Preliminary_Program.pdf

R_Colin_Johnson
User Rank
Author
re: IBM racetrack memory enters home stretch
R_Colin_Johnson   12/23/2010 9:33:07 PM
NO RATINGS
Racetrack memories work like a shift register--only with magnetic domains on a nanowire doing the shifting. The cool thing about the physics, is that no matter which way current pulses the nanowire--up or down--the imparted momentum pushes all the existing domains on the nanowire along in the same direction. The domains appear to be "pushed" along the wire, but of course is just the spins of the atoms that are moving--like the "wave" at the ballpark, where everyone stays in their seat, but just stands up at the right moment, thereby presenting the illusion of a moving wave. Likewise, magnetic domains are shifted around the nanowire loop even though the atoms stay fixed in place. Racetrack memories have been an intense research area for IBM Fellow Parkin since before 2007 when I first discovered his work. Since then, he has perfected most of the necessary components--read-head/write-head/shifter--and is now entering the "process integration" step, in which IBM will attempt to fabricate all the separate components on a single CMOS chip.



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...