Breaking News
Newest First | Oldest First | Threaded View
User Rank
re: GaN depo process said to make brighter LEDs
Keith.Lofstrom   3/1/2011 8:12:35 AM
Can you point to a journal or conference publication or website with more information? Starting with what "EVA" stands for - Ellipsoidal Void A???? The pictured material is probably useful for solar cells or LEDs. I can't imagine patterning repeatable transistors or circuitry if the voids were not aligned with the pattern. OTOH, perhaps they can be seeded from an etched or implanted pattern. Worth learning more about! Keith Lofstrom, Beaverton Oregon

User Rank
re: GaN depo process said to make brighter LEDs
R_Colin_Johnson   1/26/2011 11:30:13 PM
This is primarily a materials advance, but the applications are numerous and growing. LEDs are the most abundant application of GaN today, but the binary III/V material is being used to take on all sorts of high-power and high-frequency applications that the this new process could potentially improve, from the laser diodes used in Blu-Ray disks to the high-power MOSFETs used in electric cars to future spintronic devices.

User Rank
re: GaN depo process said to make brighter LEDs
wilber_xbox   1/26/2011 10:59:15 PM
good example of an accidental discovery. I recently read a quote that there is not such a thing like good or bad samples but always good or bad Phd researchers.

User Rank
re: GaN depo process said to make brighter LEDs
motti2   1/26/2011 2:21:14 PM
I think this is truly a breakthrough of huge implications potentially. GaN materials quality is either challenging or terribly expensive. Sapphire is a reasonable MOCVD substrate cost compromise, but with typically crappy films. The method described is an extension of variants of nanowire growth regimes, - the modestly well known wire to wine-glass ?denecking ( widening ) taken to extreme case, with HUGE materials growth quality results in the upper thicknesses. There is some remote possibility this method might enable a debonding film transfer process akin to a Silicon SOI handle wafer process to possibly enable reuse of the expensive sapphire by a touch repolishing step, for now that is speculative. I'd hazard that the statement "remains a laboratory curiosity" is out of place, aside from IP this method is likely to have very rapid uptake from potential licensees. The upper film quality looks orders of magnitude better than conventional films, likely leading to huge increases in potential power / efficiency with modest cost over crappy films. This bears very close watching how fast industry uptake proceeds.

User Rank
re: GaN depo process said to make brighter LEDs
nicolas.mokhoff   1/26/2011 7:50:21 AM
Interestingly incredible assertion based on a guess remains a laboratory curiosity. If the depo process yields LEDs and other devices with consistently reproducible results we can look forward to brighter solid-state lighting. It certainly bears following results of the new films. Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
LED lighting is an important feature in today’s and future ...
The LT8602 has two high voltage buck regulators with an ...
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...