Design Con 2015
Breaking News
Comments
Newest First | Oldest First | Threaded View
Page 1 / 2   >   >>
lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:11:42 AM
NO RATINGS
Looking at silicon would solve the problem. However, when one designs the first chip into a new node careful analysis of the leakage distribution is required. Transistor level data should be well understood so that product designs hit specified targets. Without including these statistical approaches to model and fix vt variation, a full design/tapeout would be needed to correctly measure leakage current. So the solution really is to fix the vt variation problem and to design using the correct statistics.

lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:10:22 AM
NO RATINGS
It is incorrect to use nominal devices to calculate product leakages - one really needs to consider the full statistical distribution of devices. However, if the nominal decreases, so will total power. And if the signma_Vt improves, there will be an additional boost at the product level.

lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:09:23 AM
NO RATINGS
Fig 2 is correct. The product of a Gaussian and an exponential is a shifted Gaussian. Actually, the amount of shift is determined by the product of sigma_vt ^2 and swing^2, so the larger the swing (or poorer the short channel effect) and the larger the sigma_vt, the larger the shift to higher and higher leakage. Additionally, the peak value of the new Gaussian is increased by exp(sigma_vt*swing). So again, as swing degrades and sigma_vt increases, the power dissipated will increase. If the graph plottedwas power vs. leakage (and not Vt), the plot would have been log-normal (aka asymmetric as you suggested).

lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:08:43 AM
NO RATINGS
To keep power dissipation under control, all of these techniques and many more are and will continue to be increasingly employed going forward. However, device variability will limit how much can be achieved. Taking device variability into account is a first step to get the real picture, but we really need to work towards transistors that exhibit much lower variability (sigma Vt). This will be needed to obtain significant power reduction on top of circuit and system tricks/techniques.

lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:08:04 AM
NO RATINGS
Kris, dynamic VDD control during operation is an effective method of controlling both leakage and active power consumption. This method is even more effective when transistor variation is reduced because the tighter VT variation allows greater VDD scaling before circuits become non-functional (SRAMs in particular have poor functionality at low VDD because of transistor variation).

SpeedEvil
User Rank
Rookie
re: Leakage power Ė itís worse than you think
SpeedEvil   5/4/2011 10:45:16 AM
NO RATINGS
On chip gating is already here to cut power to unused functional units. Off-chip regulation to regulate voltage(s) to specific cores on a per-core basis is getting more common. More on-chip regulators tuned to optimise the voltage to specific cores based on testing and immediate clock speed requirements have to be the way forward. It wouldn't surprise me to see eventually little inductors popping up beside CPUs and other complex chips to support on-chip switched-regulators, but linear is coming first. More and more 'deep sleep' software transparent power control - you just disable the unit, and it automagically throws the state into a backup RAM optimised for low power use and turns completely off. Shadow FRAM is also interesting - for the device being able to be truly off, and keep state.

krisi
User Rank
CEO
re: Leakage power Ė itís worse than you think
krisi   5/4/2011 1:08:17 AM
NO RATINGS
Yet another consideration is temperature as leakage sources tend to be exponentially dependent on it...Kris

DrQuine
User Rank
CEO
re: Leakage power Ė itís worse than you think
DrQuine   5/4/2011 1:05:38 AM
NO RATINGS
Another crucial issue to consider is the duty cycle of the device and the ratio between leakage current and active productive device power use. A given leakage current is much less significant for a device that is continuously productive than for a device that is only used intermittently but has leakage current all the time.

krisi
User Rank
CEO
re: Leakage power Ė itís worse than you think
krisi   5/3/2011 5:09:40 PM
NO RATINGS
To @Zavier: I like your "even better than you think", you must be working in marketing ;-)....but seriously can't you just look at the silicon data to make less speculative comparison? Kris

Zavier
User Rank
Rookie
re: Leakage power Ė itís worse than you think
Zavier   5/3/2011 4:59:19 PM
NO RATINGS
Interesting viewpoint. In the specific case of FD-SOI (which you mention at the end), before even considering the variability aspect, it is known that this technology promises lower nominal circuit-level leakage for same performance spec (by reaching a target performance at lower Vdd and with lower Ioff transistors, owing to excellent electrostatic control of transistors). So if now I take into account variability, with sigma-VT reportedly reduced by 50-60% with FD-SOI at the 22/20nm node, the article tells me I will save an additional 75% or more of leakage power at circuit level, right ? Which would mean, next time I'm talking about benefits of FD-SOI (...that's part of my job) I can say : "Leakage reduction with FD-SOI -- it's even better than you think" ;-). Makes sense ?

Page 1 / 2   >   >>


Top Comments of the Week
Flash Poll
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
<b><a href=Betajet">

The Circle – The Future's Imperfect in the Present Tense
Betajet
5 comments
The Circle, a satirical, dystopian novel published in 2013 by San Francisco-based writer Dave Eggers, is about a large, very powerful technology company that combines aspects of Google, ...

Max Maxfield

Recommended Reads From the Engineer's Bookshelf
Max Maxfield
27 comments
I'm not sure if I read more than most folks or not, but I do I know that I spend quite a lot of time reading. I hate to be idle, so I always have a book or two somewhere about my person -- ...

Martin Rowe

Make This Engineering Museum a Reality
Martin Rowe
Post a comment
Vincent Valentine is a man on a mission. He wants to make the first house to ever have a telephone into a telephone museum. Without help, it may not happen.

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
16 comments
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Special Video Section
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.
Recently formed Architects of Modern Power consortium ...
Specially modified Corvette C7 Stingray responds to ex Indy ...
Avagoís ACPL-K30T is the first solid-state driver qualified ...
NXP launches its line of multi-gate, multifunction, ...
Doug Bailey, VP of marketing at Power Integrations, gives a ...
See how to ease software bring-up with DesignWare IP ...
DesignWare IP Prototyping Kits enable fast software ...
This video explores the LT3086, a new member of our LDO+ ...
In todayís modern electronic systems, the need for power ...