Breaking News
Comments
Newest First | Oldest First | Threaded View
Page 1 / 2   >   >>
lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:11:42 AM
NO RATINGS
Looking at silicon would solve the problem. However, when one designs the first chip into a new node careful analysis of the leakage distribution is required. Transistor level data should be well understood so that product designs hit specified targets. Without including these statistical approaches to model and fix vt variation, a full design/tapeout would be needed to correctly measure leakage current. So the solution really is to fix the vt variation problem and to design using the correct statistics.

lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:10:22 AM
NO RATINGS
It is incorrect to use nominal devices to calculate product leakages - one really needs to consider the full statistical distribution of devices. However, if the nominal decreases, so will total power. And if the signma_Vt improves, there will be an additional boost at the product level.

lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:09:23 AM
NO RATINGS
Fig 2 is correct. The product of a Gaussian and an exponential is a shifted Gaussian. Actually, the amount of shift is determined by the product of sigma_vt ^2 and swing^2, so the larger the swing (or poorer the short channel effect) and the larger the sigma_vt, the larger the shift to higher and higher leakage. Additionally, the peak value of the new Gaussian is increased by exp(sigma_vt*swing). So again, as swing degrades and sigma_vt increases, the power dissipated will increase. If the graph plottedwas power vs. leakage (and not Vt), the plot would have been log-normal (aka asymmetric as you suggested).

lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:08:43 AM
NO RATINGS
To keep power dissipation under control, all of these techniques and many more are and will continue to be increasingly employed going forward. However, device variability will limit how much can be achieved. Taking device variability into account is a first step to get the real picture, but we really need to work towards transistors that exhibit much lower variability (sigma Vt). This will be needed to obtain significant power reduction on top of circuit and system tricks/techniques.

lshifren
User Rank
Rookie
re: Leakage power Ė itís worse than you think
lshifren   5/18/2011 2:08:04 AM
NO RATINGS
Kris, dynamic VDD control during operation is an effective method of controlling both leakage and active power consumption. This method is even more effective when transistor variation is reduced because the tighter VT variation allows greater VDD scaling before circuits become non-functional (SRAMs in particular have poor functionality at low VDD because of transistor variation).

SpeedEvil
User Rank
Rookie
re: Leakage power Ė itís worse than you think
SpeedEvil   5/4/2011 10:45:16 AM
NO RATINGS
On chip gating is already here to cut power to unused functional units. Off-chip regulation to regulate voltage(s) to specific cores on a per-core basis is getting more common. More on-chip regulators tuned to optimise the voltage to specific cores based on testing and immediate clock speed requirements have to be the way forward. It wouldn't surprise me to see eventually little inductors popping up beside CPUs and other complex chips to support on-chip switched-regulators, but linear is coming first. More and more 'deep sleep' software transparent power control - you just disable the unit, and it automagically throws the state into a backup RAM optimised for low power use and turns completely off. Shadow FRAM is also interesting - for the device being able to be truly off, and keep state.

krisi
User Rank
CEO
re: Leakage power Ė itís worse than you think
krisi   5/4/2011 1:08:17 AM
NO RATINGS
Yet another consideration is temperature as leakage sources tend to be exponentially dependent on it...Kris

DrQuine
User Rank
CEO
re: Leakage power Ė itís worse than you think
DrQuine   5/4/2011 1:05:38 AM
NO RATINGS
Another crucial issue to consider is the duty cycle of the device and the ratio between leakage current and active productive device power use. A given leakage current is much less significant for a device that is continuously productive than for a device that is only used intermittently but has leakage current all the time.

krisi
User Rank
CEO
re: Leakage power Ė itís worse than you think
krisi   5/3/2011 5:09:40 PM
NO RATINGS
To @Zavier: I like your "even better than you think", you must be working in marketing ;-)....but seriously can't you just look at the silicon data to make less speculative comparison? Kris

Zavier
User Rank
Rookie
re: Leakage power Ė itís worse than you think
Zavier   5/3/2011 4:59:19 PM
NO RATINGS
Interesting viewpoint. In the specific case of FD-SOI (which you mention at the end), before even considering the variability aspect, it is known that this technology promises lower nominal circuit-level leakage for same performance spec (by reaching a target performance at lower Vdd and with lower Ioff transistors, owing to excellent electrostatic control of transistors). So if now I take into account variability, with sigma-VT reportedly reduced by 50-60% with FD-SOI at the 22/20nm node, the article tells me I will save an additional 75% or more of leakage power at circuit level, right ? Which would mean, next time I'm talking about benefits of FD-SOI (...that's part of my job) I can say : "Leakage reduction with FD-SOI -- it's even better than you think" ;-). Makes sense ?

Page 1 / 2   >   >>


EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Glen Chenier

Engineers Solve Analog/Digital Problem, Invent Creative Expletives
Glen Chenier
Post a comment
An analog engineer and a digital engineer join forces, use their respective skills, and pull a few bunnies out of a hat to troubleshoot a system with which they are completely unfamiliar. ...

Max Maxfield

What's the Best Traveling Toolkit?
Max Maxfield
13 comments
A few years ago at a family Christmas party, I won a pocket knife as part of a "Dirty Santa" game. This little scamp was a Buck 730 X-Tract. In addition to an incredibly strong and sharp ...

Rishabh N. Mahajani, High School Senior and Future Engineer

Future Engineers: Donít 'Trip Up' on Your College Road Trip
Rishabh N. Mahajani, High School Senior and Future Engineer
10 comments
A future engineer shares his impressions of a recent tour of top schools and offers advice on making the most of the time-honored tradition of the college road trip.

Larry Desjardin

Engineers Should Study Finance: 5 Reasons Why
Larry Desjardin
41 comments
I'm a big proponent of engineers learning financial basics. Why? Because engineers are making decisions all the time, in multiple ways. Having a good financial understanding guides these ...

Top Comments of the Week
Flash Poll
Like Us on Facebook
EE Times on Twitter
EE Times Twitter Feed

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)