Breaking News
Comments
Newest First | Oldest First | Threaded View
Page 1 / 2   >   >>
krisi
User Rank
Author
re: Debunking the myth of the $100M ASIC
krisi   3/20/2012 7:50:17 PM
NO RATINGS
Very true Jim...and this situation is not going to change with silicon getting more complex...only people with deep pockets will be able to afford ASICs...Kris

Jim Finch
User Rank
Author
re: Debunking the myth of the $100M ASIC
Jim Finch   3/20/2012 6:21:51 PM
NO RATINGS
The primary reason startup companies spent so much money is because their Generation 1 device is almost never commercially viable. It typically works just fine, even hits key performance specs, but the price performance advantage offered is not sufficient to convince potential customers to move away from their current suppliers. This forces additional time and money to develop Gen 2 and usually Gen 3 devices before the entity can generate significant revenue at acceptable margins. This process adds 3-5 years and $30-50M of wasted capital from a VC perspective. I believe this is the greatest spending culprit for most startup companies. Jim

krisi
User Rank
Author
re: Debunking the myth of the $100M ASIC
krisi   3/20/2012 12:25:03 PM
NO RATINGS
Keep praying @WaywardGeek...silicon industry has become very mature and real innovation is rare...it is quickly becoming another stable industry like car making for example...we have enjoyed the fun ride while it lasted for 50 years!...Kris

WaywardGeek
User Rank
Author
re: Debunking the myth of the $100M ASIC
WaywardGeek   3/20/2012 8:08:36 AM
NO RATINGS
Kudos, Andreas, on a very cool engineering feat. There are niche markets where MPW runs can be a viable production solution, like military, rad-hard, and space. Not every company has to be the next Intel to be successful. However, the reality is that Moore's Law is failing, bit by bit. Fewer and fewer designs make it into the latest fab processes, and the companies that do production there are huge corporations. Rarely do we see the innovative startups that drove Silicon Valley's success, at least in the IC space. I am personally focusing on the mixed signal space, where competitive analog is still reasonably affordable. Even so, at Triad Semi, we focus on reducing up-front NRE, providing quick turn, and lowering risk, as these are issues strangling the industry. So, both you and I have moved into niches where we can innovate at small companies without insane levels of venture funding. That's where Moore's Law is failing us the most. We may still be on track for 28nm and even the next node, but the tech explosion cannot be sustained without the Darwinian competition between new ventures. What are the latest super cool new ideas being produced in 28nm? Well, yours of course, but in volume we're seeing Apple add 4 ARM cores to their iPads. I guess the iPad 4 big innovation will be 8 cores? Then 16? And Intel... 8 cores in my next laptop, with a bigger on-chip GPU? Is this really innovation? Yes, transistors are getting cheaper, but they're also getting dumber, because we just can't afford to enable all the innovators to go be creative in 28nm. I pray for a breakthrough like low cost direct-write e-beam, or something that will enable advanced silicon within reach of a traditional startup.

krisi
User Rank
Author
re: Debunking the myth of the $100M ASIC
krisi   10/10/2011 4:32:58 PM
NO RATINGS
To@moloned If silicon die is about 1cm2 which is fairly typical you would hundreds of part in 0.35um 6 inch wafer...in 65nm the wafer size would be much larger, 8 or 12 inches so you will get way more than few hundreds... I will leave to Andreas to explain your scaling question...Kris

moloned
User Rank
Author
re: Debunking the myth of the $100M ASIC
moloned   10/10/2011 4:27:17 PM
NO RATINGS
I can see how you can get to a few 100s of MPW parts in 65nm, but I can't see how this gets you to several hundred $ each for your chips. Care to explain? In the case your customers are paying this kind of price the second question would be how you plan to scale from a niche product to the mass-market?

Wilton.Helm
User Rank
Author
re: Debunking the myth of the $100M ASIC
Wilton.Helm   10/7/2011 6:57:53 PM
NO RATINGS
No question FPGAs have had a huge impact, and by implication what's left for ASIC/SoC is going to be the higher end more costly designs which is a factor skewing the numbers. But FPGAs are so cost effective and even power effecient that just about all but cutting edge, products or consumer products made in very large volumes simply cannot justify custom silicon compared to an FPGA solution. For applications like the segment I'm in, they are absolute salvation. I've discussed with others before the trend towards ASIC and high integration and how small companies and niche markets that never sell things in million piece quantities can survive. The answer is simple. FPGA. The tools can be very affordable and the chips offer a huge amount of capability for very reasonable costs. There are even some out there with analog stuff in them, not to mention some pretty credible both hard and soft core CPU implementations.

krisi
User Rank
Author
re: Debunking the myth of the $100M ASIC
krisi   10/4/2011 10:53:48 PM
NO RATINGS
The trend of replacing ASICs with FPGA started several years back and will continue with accelerated force. I remember standing at one of the large telecom trade shows showing with pride our ASIC with a Xilinx guy standing behind me and smiling. My demo board had one ASIC surrounded by 8 FPGAs! Kris

Robotics Developer
User Rank
Author
re: Debunking the myth of the $100M ASIC
Robotics Developer   10/4/2011 9:11:05 PM
NO RATINGS
Having worked in the ASIC industry for 18+ years I have seen the costs skyrocket from 30K to 1.5million. The real cost was not the NRE but the engineering cost to develop, test/simulate, PCB development and system level efforts. These get really expensive as the chip complexity goes up. That said, if you are doing plain vanilla design with low volumes most work shifted from ASICs to FPGAs. FPGAs were taking over the lower end designs both due to time to market and cost. The numbers of ASIC designers started to fade as fewer and fewer designs were attempted and companies shifted to FPGAs. Using an FPGA for the basic designs makes a lot of sense. The ease of reprogramming and quick turn times offsets the increased chip cost (per part) by allowing faster time to market. The last few chips I worked on were between 1.25 to 2.5 million for NRE alone and took over a year with 8 to 12 engineers. These were the only chips that made sense to engineer due to volume and performance drivers.

jeffw_00
User Rank
Author
re: Debunking the myth of the $100M ASIC
jeffw_00   10/4/2011 3:13:33 PM
NO RATINGS
Well said Andreas. A small number of skilled, experienced people can wear many hats, strategically pick only the tools they really need, and get better, more cost-effective results than younger, cheaper, "armies".

Page 1 / 2   >   >>


Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
LATEST ARCHIVED BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Most Recent Comments
michigan0
 
SteveHarris0
 
realjjj
 
SteveHarris0
 
SteveHarris0
 
VicVat
 
Les_Slater
 
SSDWEM
 
witeken
Most Recent Messages
9/25/2016
4:48:30 PM
michigan0 Sang Kim First, 28nm bulk is in volume manufacturing for several years by the major semiconductor companies but not 28nm FDSOI today yet. Why not? Simply because unlike 28nm bulk the LDD(Lightly Doped Drain) to minimize hot carrier generation can't be implemented in 28nm FDSOI. Furthermore, hot carrier reliability becomes worse with scaling, That is the major reason why 28nm FDSOI is not manufacturable today and will not be. Second, how can you suppress the leakage currents from such ultra short 7nm due to the short channel effects? How thin SOI thickness is required to prevent punch-through of un-dopped 7nm FDSOI? Possibly less than 4nm. Depositing such an ultra thin film less then 4nm filum uniformly and reliably over 12" wafers at the manufacturing line is extremely difficult or not even manufacturable. If not manufacturable, the 7nm FDSOI debate is over!Third, what happens when hot carriers are generated near the drain at normal operation of 7nm FDSOI? Electrons go to the positively biased drain with no harm but where the holes to go? The holes can't go to the substrate because of the thin BOX layer. Some holes may become trapped at the BOX layer causing Vt shift. However, the vast majority of holes drift through the the un-dopped SOI channel toward the N+Source,...
Like Us on Facebook
Special Video Section
Once the base layer of a design has been taped out, making ...
In this short video we show an LED light demo to ...
The LTC2380-24 is a versatile 24-bit SAR ADC that combines ...
In this short video we show an LED light demo to ...
02:46
Wireless Power enables applications where it is difficult ...
07:41
LEDs are being used in current luxury model automotive ...
With design sizes expected to increase by 5X through 2020, ...
01:48
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...