Breaking News
Comments
Newest First | Oldest First | Threaded View
docdivakar
User Rank
Author
re: Power semi market to grow 5% in 2012, says IMS
docdivakar   12/28/2011 8:51:29 PM
NO RATINGS
@resistion: you are very right, the two 'power supply' markets are distinctly different, as are their margins and volumes. The IGBT-based ones are typically several orders less in magnitude than the lower power MOSFET-based solutions. So it is confusing to broad-brush both in the same context. MP Divakar

wilber_xbox
User Rank
Author
re: Power semi market to grow 5% in 2012, says IMS
wilber_xbox   12/24/2011 3:04:21 PM
NO RATINGS
5% growth is quite pessimistic growth but i think looking at today's macroeconomic condition the growth may be realistic. The focus for growth in consumer market next year will be in the ultrabook, tablet, automobile and smartphone. Let's see how much push would the industry get.

GREATTerry
User Rank
Author
re: Power semi market to grow 5% in 2012, says IMS
GREATTerry   12/23/2011 3:27:42 PM
NO RATINGS
Power supply nevertheless is the key portion of nowadays electronics, especially more and more portable stuff are being built. Higher efficiency is the key to drive for "greener energy/power" so people are forced to put more stuff on the power portion in order to squeeze more energy out of the battery and drive the key electronics with the best and efficient way.

resistion
User Rank
Author
re: Power semi market to grow 5% in 2012, says IMS
resistion   12/23/2011 2:12:52 AM
NO RATINGS
Power IC is a misnomer in this article. Usually it is thought of in terms of superhigh voltages (like kV). That market should be less than a billion. http://www.pddnet.com/news-report-yole-developpment-the-power-electronics-market-is-booming-at-all-voltage-ranges-030810/ If you are thinking ac/dc charging, that's "low-power" electronics, which should be everywhere now, I think.

Kinnar
User Rank
Author
re: Power semi market to grow 5% in 2012, says IMS
Kinnar   12/22/2011 4:44:36 PM
NO RATINGS
It is quite true that the demand of the Power Modules will be very much compared to the discrete's or ICs, as designing switching converters expertise is very limited and is confined in some patches on the globe, this will lead to the usage of predesigned and premanufactured power modules.



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
LATEST ARCHIVED BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Most Recent Comments
michigan0
 
SteveHarris0
 
realjjj
 
SteveHarris0
 
SteveHarris0
 
VicVat
 
Les_Slater
 
SSDWEM
 
witeken
Most Recent Messages
9/25/2016
4:48:30 PM
michigan0 Sang Kim First, 28nm bulk is in volume manufacturing for several years by the major semiconductor companies but not 28nm FDSOI today yet. Why not? Simply because unlike 28nm bulk the LDD(Lightly Doped Drain) to minimize hot carrier generation can't be implemented in 28nm FDSOI. Furthermore, hot carrier reliability becomes worse with scaling, That is the major reason why 28nm FDSOI is not manufacturable today and will not be. Second, how can you suppress the leakage currents from such ultra short 7nm due to the short channel effects? How thin SOI thickness is required to prevent punch-through of un-dopped 7nm FDSOI? Possibly less than 4nm. Depositing such an ultra thin film less then 4nm filum uniformly and reliably over 12" wafers at the manufacturing line is extremely difficult or not even manufacturable. If not manufacturable, the 7nm FDSOI debate is over!Third, what happens when hot carriers are generated near the drain at normal operation of 7nm FDSOI? Electrons go to the positively biased drain with no harm but where the holes to go? The holes can't go to the substrate because of the thin BOX layer. Some holes may become trapped at the BOX layer causing Vt shift. However, the vast majority of holes drift through the the un-dopped SOI channel toward the N+Source,...
Like Us on Facebook
Special Video Section
Once the base layer of a design has been taped out, making ...
In this short video we show an LED light demo to ...
The LTC2380-24 is a versatile 24-bit SAR ADC that combines ...
In this short video we show an LED light demo to ...
02:46
Wireless Power enables applications where it is difficult ...
07:41
LEDs are being used in current luxury model automotive ...
With design sizes expected to increase by 5X through 2020, ...
01:48
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...