Breaking News
Comments
Newest First | Oldest First | Threaded View
PV-Geek
User Rank
Author
re: Lines blurring between digital, analog design worlds
PV-Geek   2/11/2012 10:35:21 PM
NO RATINGS
With the maturing of 3D-IC processing and design tool capabilities, it will be interesting to see if more companies begin migrating the analog portions to separate die/process and then integrating them vertically.

Reid Wender
User Rank
Author
re: Lines blurring between digital, analog design worlds
Reid Wender   2/3/2012 8:31:54 PM
NO RATINGS
New (ie smaller geometries) have fueled digital innovation by allowing us to pack more and more digital transistors into the same silicon area. Analog "in general" doesn't scale quite the same so going to smaller geometries doesn't make the circuit smaller and less expensive. These smaller geometry nodes also have thinner oxides and lower operating voltages so it is often more difficult to design high performance analog at these smaller nodes. That's why you hear a lot of folks saying "More than Moore" these days because a lot of really cool analog and mixed signal designs are being done at the older 0.35u and 0.18u nodes.

mcgrathdylan
User Rank
Author
re: Lines blurring between digital, analog design worlds
mcgrathdylan   2/2/2012 6:53:19 AM
NO RATINGS
Well said Frank. Thanks for chiming in as always.

old account Frank Eory
User Rank
Author
re: Lines blurring between digital, analog design worlds
old account Frank Eory   2/1/2012 11:46:21 PM
NO RATINGS
I would take exception to the statement that 70% of today's chips are mixed-signal. IMHO, the true number is 100%. Even (or especially) the most gargantuan digital SoC at least has a PLL or two, some DDR I/Os, and other cells that it would be a stretch to refer to as "digital." Yes, the toolsets are very different and there is no question that the bulk of EDA innovation over the last couple decades has been on the digital side. The really interesting part, and a big divergence of methodologies, comes at the chip top level where all the blocks get integrated. In a Big D/Little A chip, the integration is done in a "digital" P&R tool and the analog designers just deliver their blocks (cells), however large or small -- data converters, PLLs, I/O buffers, voltage regulators or whatever. In a Big A/Little D chip, it's the other way around -- the "digital" blocks are treated as cells, like any analog cell, and the whole thing gets integrated into a full chip in an "analog" P&R tool. To add another level of complexity and weirdness, none of the "analog" blocks are truly analog -- there are always some digital standard cells in there too. This creates interesting problems for incorporating that loose logic into scan chains and making the whole thing ATPG-tool-friendly. The analog designers don't know the digital tools and the digital designers don't know the analog tools, so there need to be at least a few people who could rightly be called AMS designers -- those who can play in both sandboxes, to try to cobble the whole mess together into something that is thoroughly verified and tapeout-worthy.

goafrit
User Rank
Author
re: Lines blurring between digital, analog design worlds
goafrit   2/1/2012 9:49:52 PM
NO RATINGS
Cost and many unknown. If you have a product that has good yield in process A and process B is unknown, it makes no sense to risk that pipeline.

mcgrathdylan
User Rank
Author
re: Lines blurring between digital, analog design worlds
mcgrathdylan   2/1/2012 6:47:13 AM
NO RATINGS
@yalanand- Why are they reluctant to move to new processes?

yalanand
User Rank
Author
re: Lines blurring between digital, analog design worlds
yalanand   2/1/2012 6:12:23 AM
NO RATINGS
Many companies tried to automate the analog design flow (both schematic and layout) and failed. Things like small mismatch in the design can severely affect the performance of the analog designs. Moreover many companies are still using old-reliable analog processes and are reluctant to move to the new processes.



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
LATEST ARCHIVED BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Like Us on Facebook
Special Video Section
The LTC2380-24 is a versatile 24-bit SAR ADC that combines ...
In this short video we show an LED light demo to ...
02:46
Wireless Power enables applications where it is difficult ...
07:41
LEDs are being used in current luxury model automotive ...
With design sizes expected to increase by 5X through 2020, ...
01:48
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...