Breaking News
Comments
Newest First | Oldest First | Threaded View
<<   <   Page 2 / 2
Traces
User Rank
Author
re: Boosting long-haul microwave capacity with 1024 QAM
Traces   3/28/2012 10:10:53 AM
NO RATINGS
Well, for sure, you can only run 1024 QAM on "bluebird days," but that's the point of adaptive modulation. Although having this sort capability that can only be used under the right conditions would seem like a huge waste in the consumer electronics space, infrastructure is a completely different space.

old account Frank Eory
User Rank
Author
re: Boosting long-haul microwave capacity with 1024 QAM
old account Frank Eory   3/27/2012 10:45:56 PM
NO RATINGS
It would be interesting to know how often the system can actually operate in 1024 QAM mode in the real world. In a pure AWGN channel, 1024 QAM requires "only" four times as much power as 256 QAM at the same BER, but the situation quickly gets much worse in the presence of interference. The 25% capacity gain over 256 QAM is probably well worth the higher electric bill, but what is the effective capacity gain on a typical long-haul system? Can an operator expect to operate in 1024 QAM mode 25% of the time, 75% of the time, or what?

chanj0
User Rank
Author
re: Boosting long-haul microwave capacity with 1024 QAM
chanj0   3/27/2012 9:22:25 PM
NO RATINGS
Excellent introductory article. The article mentioned about transmission distance. I am quite interested in knowing the theoretical maximum transmitted distance vs the modulation scheme.

JanineLove
User Rank
Author
re: Boosting long-haul microwave capacity with 1024 QAM
JanineLove   3/27/2012 1:46:39 PM
NO RATINGS
This struck me as a great intro to long haul microwave. It might be a great piece to share with the non-techies in your life to help explain what we do!

<<   <   Page 2 / 2


Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
The quality and reliability of Mill-Max's two-piece ...
01:34
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...