Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
Chipguy1
User Rank
Author
re: IMEC looks at variability issue beyond 10 nm
Chipguy1   6/5/2012 8:09:30 PM
NO RATINGS
Correct. You may even be able to make the transistor smaller (.i.e. "7nm roughly 14 atoms") but the smaller transistor tends not to be better or even if the mean values of the transistor is "better" (improved performance or power) a product made with a billions of the transistors will not improve or will improve less due to variability ( i.e. some transistors have 13 atoms or the worse billion transistor might only have 5 atoms). I think we are seeing the early signs of Moore's Law slowing already and your logic correct. For the most advanced node intels 22nm (where parts of the silicon fin are only ~7nm thick), , I do think at the transistor level a single CMOS inverter (2 transistor )improves power ~50% per intel's data ....but ivy bridge product shows much less if any power improvement. For example, Ivy bridge shows worse power. Actual number depends where you benchmark the part. One benchmark case is over clocking where the worse power leads to higher chip temperature.

Yog-Sothoth
User Rank
Author
re: IMEC looks at variability issue beyond 10 nm
Yog-Sothoth   6/3/2012 5:07:54 PM
NO RATINGS
These people who say 'Moores law will continue' probably never studied physics, perhaps even basic maths. Silicon has a lattice constant of 5.43095 anstroms. 1 angstrom = 0.1nm i.e. the spacing between crystalline silicon atoms is about 0.5nm. So once you get below 10nm, there aren't that many atoms in your channel. At 7nm you've got roughly 14. Now, do you think you can make devices that operate in bulk mode when you're down to atomic scale (assuming you can pattern stuff similarly small)?

yalanand
User Rank
Author
re: IMEC looks at variability issue beyond 10 nm
yalanand   6/3/2012 1:02:18 PM
NO RATINGS
Thanks for sharing the Variability challenges slide. This beautifully explains the challenges we face at different nodes. No doubt sub 10nm node we will face lot of issues but am sure with the latest technology available we will eventually break the 10nm node barrier.

goafrit
User Rank
Author
re: IMEC looks at variability issue beyond 10 nm
goafrit   6/3/2012 11:10:52 AM
NO RATINGS
I am concerned that companies are seeing this process migration as a strong competitive weapon. I do not think it makes a lot of difference if you are not Intel making these billion transistor microprocessors.

resistion
User Rank
Author
re: IMEC looks at variability issue beyond 10 nm
resistion   6/2/2012 1:41:57 AM
NO RATINGS
The move to sidewall gate oxide actually presented an extra scaling impediment.



Radio
NEXT UPCOMING BROADCAST
In conjunction with unveiling of EE Times’ Silicon 60 list, journalist & Silicon 60 researcher Peter Clarke hosts a conversation on startups in the electronics industry. One of Silicon Valley's great contributions to the world has been the demonstration of how the application of entrepreneurship and venture capital to electronics and semiconductor hardware can create wealth with developments in semiconductors, displays, design automation, MEMS and across the breadth of hardware developments. But in recent years concerns have been raised that traditional venture capital has turned its back on hardware-related startups in favor of software and Internet applications and services. Panelists from incubators join Peter Clarke in debate.
Flash Poll
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Special Video Section
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.