Breaking News
Comments
Newest First | Oldest First | Threaded View
Chipguy1
User Rank
CEO
re: IMEC looks at variability issue beyond 10 nm
Chipguy1   6/5/2012 8:09:30 PM
NO RATINGS
Correct. You may even be able to make the transistor smaller (.i.e. "7nm roughly 14 atoms") but the smaller transistor tends not to be better or even if the mean values of the transistor is "better" (improved performance or power) a product made with a billions of the transistors will not improve or will improve less due to variability ( i.e. some transistors have 13 atoms or the worse billion transistor might only have 5 atoms). I think we are seeing the early signs of Moore's Law slowing already and your logic correct. For the most advanced node intels 22nm (where parts of the silicon fin are only ~7nm thick), , I do think at the transistor level a single CMOS inverter (2 transistor )improves power ~50% per intel's data ....but ivy bridge product shows much less if any power improvement. For example, Ivy bridge shows worse power. Actual number depends where you benchmark the part. One benchmark case is over clocking where the worse power leads to higher chip temperature.

Yog-Sothoth
User Rank
Freelancer
re: IMEC looks at variability issue beyond 10 nm
Yog-Sothoth   6/3/2012 5:07:54 PM
NO RATINGS
These people who say 'Moores law will continue' probably never studied physics, perhaps even basic maths. Silicon has a lattice constant of 5.43095 anstroms. 1 angstrom = 0.1nm i.e. the spacing between crystalline silicon atoms is about 0.5nm. So once you get below 10nm, there aren't that many atoms in your channel. At 7nm you've got roughly 14. Now, do you think you can make devices that operate in bulk mode when you're down to atomic scale (assuming you can pattern stuff similarly small)?

yalanand
User Rank
Rookie
re: IMEC looks at variability issue beyond 10 nm
yalanand   6/3/2012 1:02:18 PM
NO RATINGS
Thanks for sharing the Variability challenges slide. This beautifully explains the challenges we face at different nodes. No doubt sub 10nm node we will face lot of issues but am sure with the latest technology available we will eventually break the 10nm node barrier.

goafrit
User Rank
Manager
re: IMEC looks at variability issue beyond 10 nm
goafrit   6/3/2012 11:10:52 AM
NO RATINGS
I am concerned that companies are seeing this process migration as a strong competitive weapon. I do not think it makes a lot of difference if you are not Intel making these billion transistor microprocessors.

resistion
User Rank
Manager
re: IMEC looks at variability issue beyond 10 nm
resistion   6/2/2012 1:41:57 AM
NO RATINGS
The move to sidewall gate oxide actually presented an extra scaling impediment.



Flash Poll
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Max Maxfield

MSGEQ7-Based DIY Audio Spectrum Analyzer: Testing
Max Maxfield
13 comments
In my previous column on this topic, we discussed the step-by-step construction of the first pass at a MSGEQ7-based DIY audio spectrum analyzer for use in my BADASS Display project. Of ...

Karen Field

June 2014 Cartoon Caption Winner
Karen Field
13 comments
Congratulations to "Wnderer" for submitting the winning caption for our June cartoon, after much heated conversation by our judges, given the plethora of great entries.

Jeremy Cook

Inspection Rejection: Why More Is Less in a Vision System
Jeremy Cook
3 comments
Albert Einstein has been quoted as saying, "Everything should be as simple as possible, but not simpler." I would never claim to have his level of insight -- or such an awesome head of ...

Jeremy Cook

Machine Fixes That Made Me Go 'DUH!'
Jeremy Cook
21 comments
As you can see in my bio at the end of this article, I work as a manufacturing engineer. One of my favorite things that happens on a Friday late in the afternoon is to hear my phone ring ...

Top Comments of the Week
Like Us on Facebook
EE Times on Twitter
EE Times Twitter Feed

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)