Breaking News
Comments
Newest First | Oldest First | Threaded View
<<   <   Page 3 / 4   >   >>
efan999
User Rank
Author
re: Micron claims first high-volume production of PCM
efan999   7/19/2012 2:36:18 PM
NO RATINGS
dylan: Why wait? Didn't you see the DRAM in the chip? PCM was supposed to replace both DRAM and NOR - why do you now need to add DRAM in the MCP? Please enlighten us! No commercial product is using Micron's "volume" product, and none will ever will. The reasons have been explained to you numerous times. Oh, and by the way, after Ovonyx goes bankrupt this year, it will all become clear to you.

rbtbob
User Rank
Author
re: Micron claims first high-volume production of PCM
rbtbob   7/19/2012 1:25:32 PM
NO RATINGS
I am hoping that the mechanism in the U of Penn research is the same as something I read in a research paper quite a while ago. That paper proposed a matrix with most of the vertices fixed, but particular pieces of some of the unit cells come loose. Like a bunch of tiny gates being opened. I have a vague memory that Mr. Neale has observed a similar mechanism in a cell with a very small cross section. I know that there is research being done on doping the chalcogenide with Fe, but I suggest that Prof. Agrawal try their nano-wires doped with Tb and Er. (2 separate wires) That is from another paper I read that reported anomalous results from some rare earth doped chalcogenides.

Kinnar
User Rank
Author
re: Micron claims first high-volume production of PCM
Kinnar   7/19/2012 12:26:12 PM
NO RATINGS
The PCM needs to primary questions to be answered and solved, 1. The price of the memory and 2. The reliability of the product using PCM throughout the globe. If this goes well then I think one can take of risk of using it in the proven designs.

resistion
User Rank
Author
re: Micron claims first high-volume production of PCM
resistion   7/19/2012 8:47:13 AM
NO RATINGS
Very interesting to me too. I think Prof. Agrawal's group attributed the amorphization to dislocation bunching under "electric wind" which I interpret to mean electromigration. But I haven't read the article myself. Need to go somewhere to get access.

R G.Neale
User Rank
Author
re: Micron claims first high-volume production of PCM
R G.Neale   7/19/2012 8:41:28 AM
NO RATINGS
Mr Rbtbob-I can assure you there was some in- house editorial discussion. I am still working through their paper. On the the "potential" NV memory front I am more impressed with the nmRAM (atomically dispersed metal) work from the same University. I have done some scaling exercises on the nmRAM and it looks good. It offers a very low write current but does require a bi-directional matrix isolating device. In answer to your specific question, my first concern was understanding how the sample was physically supported. I think you have to consider the possibility that the material being subjected to the short pulses was under strain the local pressure wave could induce nano-cracks that appear at the surface. Chopping away at the crystal structure with very small multiple reset pulses has been part of the PCM reset technique since day one. have a look at the 100 level PCM work at Stanford. Look under PCM Brain with EEtimes search engine. In that case resolving the actual temperature at the grain boundaries, melting or otherwise is not trivial.It is not clear why this disorder is seen at the surface other than the strain provides a "crack" propagation mechanism. Finally does this disordered material have a glass transition temperature and the other properties of the disordered PCM material created by melting and quenching. There is a non-melting order transition at the glass transition temperature perhaps without melting. More on this later perhaps.

rbtbob
User Rank
Author
re: Micron claims first high-volume production of PCM
rbtbob   7/19/2012 3:16:40 AM
NO RATINGS
Mr. Neale, What do you think about the U of Penn research announced in June: "Now we have shown that there is a way to achieve this transition without melting the material," Agarwal said. "We show that short electrical pulses of a few hundred nanosecond duration gradually induce disorder in the material until it amorphizes." http://www.nanowerk.com/news/newsid=25686.php (I could not find the research covered here on EE Times)

R G.Neale
User Rank
Author
re: Micron claims first high-volume production of PCM
R G.Neale   7/19/2012 12:14:15 AM
NO RATINGS
Dylan: Did Micron tell you how many of these 90nm devices in "volume production" were actually shipped and sold? More importantly how many product design- in wins were achieved? "Proof of PCM's potential" I think PCM potential has been there for fifty years-for PCM realization of potential is the name of the game, with PCM devices that are competitive in price, performance and reliability.

R G.Neale
User Rank
Author
re: Micron claims first high-volume production of PCM
R G.Neale   7/18/2012 11:53:28 PM
NO RATINGS
In a comment added to my piece published July 2010 http://www.eetimes.com/electronics-news/4205010/Phase-change-memory-rebuttal a reader cited a quote from Samsung “…Memory for portable consumer devices today is at a major turning point as mobile applications increasingly require more diverse memory technology,” said Jun Dong-soo, an executive vice president at Samsung Electronics. “The launch of our PRAM in an advanced MCP solution for the replacement of 40 nm-class and finer geometry NOR meets this need head-on,” he said...." The results of that head-on collision may have some relevance to Micron as they proceed along what appears to be the same road. For the new PCM I assume and hope “availability” means the 1G-bit MCP is fully qualified and with an associated data sheet. The write/erase lifetime cited for this 1 G-bit 45nm MCP device is given as 100,000 cycles, whereas Micron’s prediction for w/e cycle lifetime at 45nm was 10E9 cycles. This was discussed in http://www.eetimes.com/design/memory-design/4210054/PCM-Scalability-The-Myth--Part-2-?pageNumber=0 All things being equal, it may be churlish to describe this is anything but PCM progress; representing a scaling holding point until, and if, the very difficult PCM scaling problems ever get solved. My view is unless Micron can in short order get a scaled 8G-bit PCM in the MCP or their Cube (or even a multi-chip based 8G-bit PCM) they will suffer the same fate as the Samsung MCP-PCM. So continuing the road analogy above we hope they have their seat belts on.

mcgrathdylan
User Rank
Author
re: Micron claims first high-volume production of PCM
mcgrathdylan   7/18/2012 11:14:14 PM
NO RATINGS
I know. I have kind of been waiting to hear from Volatile Memory on this, too.

Jame77
User Rank
Author
re: Micron claims first high-volume production of PCM
Jame77   7/18/2012 10:42:12 PM
NO RATINGS
Waiting for the "PCM is a techno-ponzi" guy to chime in.

<<   <   Page 3 / 4   >   >>


Radio
LATEST ARCHIVED BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Like Us on Facebook
Special Video Section
With design sizes expected to increase by 5X through 2020, ...
01:48
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...