Breaking News
Comments
Newest First | Oldest First | Threaded View
psevalia
User Rank
Author
re: London Calling: SiTime, WiSpry say MEMS the word
psevalia   8/9/2012 8:41:20 PM
NO RATINGS
golfdog - I invited you to download SiTime's performance reports (http://www.sitime.com/support/performance-measurement-report) to see for yourself how our jitter, frequency stability, aging and STFS (Allan Deviation) performance meets the requirements of all computing, consumer, enterprise, storage, and Ethernet applications. You'll have to register to get access to this data. Electronics companies are also converting to MEMS timing because of another reason - Resilience. See here (http://www.sitime.com/company/technology-overview/benefits/40x-more-resilient) for measured data on how SiTime's Silicon MEMS timing solutions are up to 40 times more superior than quartz devices. The timing market (resonators, oscillators, clock generators, buffers) is already $6B in size. Customers are converting rapidly from legacy quartz solutions to advanced MEMS solutions because they benefit in performance, resilience, reliability and cost. This is driving the rapid growth of the Silicon MEMS timing industry. Piyush Sevalia Exec VP, Marketing, SiTime Corp. psevalia@sitime.com

Golfdog
User Rank
Author
re: London Calling: SiTime, WiSpry say MEMS the word
Golfdog   8/9/2012 7:55:50 PM
NO RATINGS
MEMS appear to be well suited for high-vibration environments, to non-critically timed applications and applications where signal-to-noise ratios are not important. Applications that have complex modulation schemes, very high-speed communication, or that require excellent signal-to-noise performance will continue to be clocked by crystal based oscillator devices that have exceptional high Q and excellent temperature stability characteristics found in Quartz. The two technologies are not interchangeable. Frequency variations from both the lower Q and digital temperature compensation in the MEMS oscillators result in frequency fluctuations that are unacceptable in most applications. (Would require a form of digital adjustments in the PLL circuit to correct the frequency…) Jitter is an important characteristic in most of today’s computing and RF applications and quartz based oscillators have jitter performance that is equal or exceeds the best oscilloscopes. MEMS will never meet this requirement. Is there merit to MEMS in low end applications?…Yes there is….but they are limited. Just because this is a silicon device does not mean its inherent characteristics will eliminate the need for quartz based devices. In 2010…the global market created $165 Million in revenues for MEMS…with the majority coming from the consumer and the automotive sensor application space. I disagree with Karen that this will be a $20B market in 5 years. The Crystal based global timing market now is only $29B. The cost of MEMS at this juncture cannot keep pace with the lower cost of the new innovative quartz fabrication technologies. With the technology advantages of quartz crystal based devices in this ever evoloving wireless space we live in...the applications for MEMS are limited as noted.

karenlightman
User Rank
Author
re: London Calling: SiTime, WiSpry say MEMS the word
karenlightman   8/9/2012 2:32:14 PM
NO RATINGS
I beg to differ - the reason there is specialization is because there is so much opportunity for the adoption of MEMS! It's not fragmented; it's growing and maturing and developing into a robust industry - predicted to top $20B by 2017! Yes there will be some consolidation but there will more partnership (see this article by Peter Clarke as an example) which will spur more opportunity for innovation and yes, more adoptions of MEMS. Karen

krisi
User Rank
Author
re: London Calling: SiTime, WiSpry say MEMS the word
krisi   8/9/2012 1:26:54 PM
NO RATINGS
Good signs that MEMs companies are maturing...but both are highly specialized and the overall market is still highly fragmented...time for some consolidation? Kris



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
LATEST ARCHIVED BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Like Us on Facebook
Special Video Section
The LTC2380-24 is a versatile 24-bit SAR ADC that combines ...
In this short video we show an LED light demo to ...
02:46
Wireless Power enables applications where it is difficult ...
07:41
LEDs are being used in current luxury model automotive ...
With design sizes expected to increase by 5X through 2020, ...
01:48
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...