Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
<<   <   Page 2 / 2
csmaurojr
User Rank
Author
re: IBM, ST go back to the future with nanorelay logic
csmaurojr   9/4/2012 10:17:46 PM
NO RATINGS
You must be joking... THIS is where we're headed? Somehow, I doubt that Intel and others are too worried about the potential competition. Still, it does cause one pause, and in thinking about it, I can see all sorts of low-end applications that beg for as close to zero power if were possible to achieve. This may help.

Wilton.Helm
User Rank
Author
re: IBM, ST go back to the future with nanorelay logic
Wilton.Helm   9/4/2012 9:49:45 PM
NO RATINGS
One possible advantage would be that this takes us back to the polarity insensitive and bidirictional current flow inherent in a relay. Back when logic was routinely made from relays, those attributes were routinely taken advantage of to create systems that weren't strictly boolean in nature. The result was fewer relays (and lower power consumption).

Jayna Sheats
User Rank
Author
re: IBM, ST go back to the future with nanorelay logic
Jayna Sheats   9/4/2012 4:39:39 PM
NO RATINGS
Work on this topic has been going on at UC Berkeley for several years and they are making small scale demonstrators now. How does the European academic background work compare?

<<   <   Page 2 / 2


Radio
LATEST ARCHIVED BROADCAST
As data rates begin to move beyond 25 Gbps channels, new problems arise. Getting to 50 Gbps channels might not be possible with the traditional NRZ (2-level) signaling. PAM4 lets data rates double with only a small increase in channel bandwidth by sending two bits per symbol. But, it brings new measurement and analysis problems. Signal integrity sage Ransom Stephens will explain how PAM4 differs from NRZ and what to expect in design, measurement, and signal analysis.

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Like Us on Facebook
Special Video Section
The LTC®6363 is a low power, low noise, fully differential ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...