Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
JoelB01
User Rank
Author
re: Understanding clock domain crossing issues
JoelB01   6/21/2013 7:00:03 PM
NO RATINGS
There is another issue with data coherency that you did not address. The trace delay for all bits in the "A" bus must be approximately the same, and should be less than the period of C2. Unfortunately, it is common to "false_path" the data from FA to FB, which allows the tools to violate this requirement. This is especially a problem in the case where C1 and C2 are asynchronous clocks that are nearly the same frequency, and that frequency is fairly high. For example, with a frequency of 400MHz, the C2 period is just 2.5ns. If A is a 6-bit Gray coded value, and the the data delay for most bits of A ~0.5ns, while the delay for A[1] is much larger (5.5ns, 2 full C2 clock cycles later), you can run into an issue where the receiver gets a Gray code sequence that can lead to problems: Sent: 001100 001101 001111 (bit 1 transitions) 001110 (bit 0 transitions) 001010 (bit 2 transitions) Received: 001100 001101 001100 (bit 0 transition!) 001010 (bit 1 and 2 transition) In this event, the Gray code that the receiver sees appears to have decremented (from 001101 to 001100), where it should have only incremented. We have been able to address this problem in the Xilinx FPGA tool flow using a TIMESPEC with DATAPATHONLY, but have not been able to find a solution for this issue in the Altera FPGA tool flow.

old account Frank Eory
User Rank
Author
re: Understanding clock domain crossing issues
old account Frank Eory   5/31/2013 8:26:06 PM
NO RATINGS
Thanks for this excellent article and very thorough coverage of CDC problems and their solutions.

I_B_GREEN
User Rank
Author
re: Understanding clock domain crossing issues
I_B_GREEN   9/28/2012 5:29:50 PM
NO RATINGS
Your pictures gloss over hold up times



Radio
LATEST ARCHIVED BROADCAST
As data rates begin to move beyond 25 Gbps channels, new problems arise. Getting to 50 Gbps channels might not be possible with the traditional NRZ (2-level) signaling. PAM4 lets data rates double with only a small increase in channel bandwidth by sending two bits per symbol. But, it brings new measurement and analysis problems. Signal integrity sage Ransom Stephens will explain how PAM4 differs from NRZ and what to expect in design, measurement, and signal analysis.

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Like Us on Facebook
Special Video Section
The LTC®6363 is a low power, low noise, fully differential ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...