Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
Robert.Fifield
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
Robert.Fifield   10/12/2012 8:25:52 AM
NO RATINGS
This technique is not suitable for applications which have signal components at very different input levels. As your mention, when one of the gain paths saturates, the signal will be sourced from a lower gain non-saturated path. It is important to note that the saturated ADC must still recover quickly when the signal is back within its range. Regards, Rob.

Robert.Fifield
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
Robert.Fifield   10/12/2012 8:12:31 AM
NO RATINGS
This is a general equation for the performance of an ideal ADC. It also assumes that the complete range of the ADC is exercised. Regards, Rob.

Robert.Fifield
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
Robert.Fifield   10/12/2012 8:05:23 AM
NO RATINGS
A feedback system is one method to help correct amplitude matching, another method is to correct using post processing in the digital domain. Regards, Rob.

Richard.Picado
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
Richard.Picado   10/11/2012 4:55:42 PM
NO RATINGS
I wonder how the system avoids over-drive/saturation of the mid-range and low-end ADCs when a very strong signal (within the high-end range) is present at the very input before the split, for example in a broadband multi-carrier scenario where multiple different narrowband signals may get into the system each with very different input levels. Or probably the application as discuss by Mr. Fifield is for a single wideband signal therefore saturation of the lower-end ADCs can be discarded. Anyway, very interesting setup.

fshah
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
fshah   10/11/2012 3:28:21 PM
NO RATINGS
More than two decades ago I got into a similar problem for current measurement in an energy meter requiring high dynamic range. I easily solved the problem by using a programmable gain amplifier using analog switches and an op-amp. It worked like a charm for such a slow speed application using a home grown double sided board. Farooq Shah

Brakeshoe
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
Brakeshoe   10/11/2012 12:55:08 PM
NO RATINGS
Quick question on footnote [2]: "The calculation for ENOB is: (dynamic range – 1.76)/6.02" I've never seen this equation before: Is it specific to the system, or does this apply to any number of ADC's?

agk
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
agk   10/11/2012 11:26:58 AM
NO RATINGS
The design and test of this stacked ADC is quite interesting. To perfect this the analog gain amplifiers need to have very good matching in phase and amplitude. Probably i feel that if there is a control with feed back between these gain stages in the stacked system the performance may be further improved.

Douglas.Butler
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
Douglas.Butler   10/10/2012 1:58:43 PM
NO RATINGS
A few years ago I had a problem digitizing heading rate for a robot. Then I realized I needed heading data in two distinct modes. When traveling in a straight line I needed high resolution heading rate data near zero. When the robot was turning I needed low resolution data over the full voltage range. I easily solved the problem by using two 8 bit A/D channels on the same input, one through a clamped x32 amplifier. When turning I used the non-amplified signal. When traveling straight I used the amplified signal.

Navelpluis
User Rank
Author
re: Stretching the Dynamic Range of ADCs—A case study
Navelpluis   10/10/2012 8:48:30 AM
NO RATINGS
Robert, thanks for posting this conceptual story. It really triggered my chaotic brain and I directly thought about customer applications. I simply like these kind of articles, so again, thanks.



Radio
LATEST ARCHIVED BROADCAST
As data rates begin to move beyond 25 Gbps channels, new problems arise. Getting to 50 Gbps channels might not be possible with the traditional NRZ (2-level) signaling. PAM4 lets data rates double with only a small increase in channel bandwidth by sending two bits per symbol. But, it brings new measurement and analysis problems. Signal integrity sage Ransom Stephens will explain how PAM4 differs from NRZ and what to expect in design, measurement, and signal analysis.

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Like Us on Facebook
Special Video Section
The LTC®6363 is a low power, low noise, fully differential ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...