Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
LJohnso58
User Rank
Author
re: Electrically-aware design improves analog/mixed-signal productivity
LJohnso58   11/1/2012 6:47:26 PM
NO RATINGS
While this article is focused on the chip creation process, it is equally applicable to the board level creation process, also at the advanced nodes. High density designs in this arena also need electrical awareness from top to bottom. EDA vendors are starting to address this with integrated tool suites incorporating schematic, simulation, PCB and documenation all rolled into one. These tools don't go far enough yet. We routinely work at geometries on the PCB that once were reserved for silicon. We have mixed signal and have to do current density analysis as well as thermal flow analysis. SI analysis is also an integral part of PCB layout and unfortunately, very few DRC tools understand how to check for unbroken return paths, proper termination placement and unexpected radiation. Parasitics from the layout need to be extracted and moved back to the simulation environment to tighten the design so it can be adjusted prior to finalization. Gone are the days when we can just throw a design over the wall to the next step in the process. More and more, the entire vertical process belongs in the hands of a single engineer, and the tools need to support that approach. As no engineer can be expected to know and comprehend all the technologies that may appear on a board,a team is now divided horizontally, so the tools need to permit collaborative efforts. Such tools are just starting to emerge, but not all are on the band wagon. At this time, only a small percentage of project absolutely fall into this category, but as time moves on, these sorts of things will become the norm. Just think of the many tools we have for board and system design that used to be the province of silicon designers. Perhaps its time for that lag to disappear.

Guru of Grounding
User Rank
Author
re: Electrically-aware design improves analog/mixed-signal productivity
Guru of Grounding   11/1/2012 6:45:28 PM
NO RATINGS
Although this piece is so full of "marketspeak" that I needed to translate every sentence to get the drift, the point is an excellent one. Those of us who work in the low-level, wide dynamic-range analog world called "audio" learned long ago that "auto-routing" circuit boards leads most often to disaster. Given the generally poor state of analog skill, an auto-router that embraced common-impedance coupling, magnetic loop areas, and electric field coupling could eliminate thousands of badly-designed products. In audio, most of these bad designs pass bench tests but have horrible problems when connected into real-world systems where power-line noise and significant shield currents exist. I dub many of these "sensitive" designs as "power-line primadonnas".

Ron.Koths
User Rank
Author
re: Electrically-aware design improves analog/mixed-signal productivity
Ron.Koths   11/1/2012 3:37:43 PM
NO RATINGS
I couldn't agree more, why can't my layout software show me a 3D projection with lines of force or a colored cloud representing the magnetic field of the trace I'm laying down, as I route it.



Radio
LATEST ARCHIVED BROADCAST
As data rates begin to move beyond 25 Gbps channels, new problems arise. Getting to 50 Gbps channels might not be possible with the traditional NRZ (2-level) signaling. PAM4 lets data rates double with only a small increase in channel bandwidth by sending two bits per symbol. But, it brings new measurement and analysis problems. Signal integrity sage Ransom Stephens will explain how PAM4 differs from NRZ and what to expect in design, measurement, and signal analysis.

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Most Recent Comments
samlebon2306
 
perl_geek
 
Clive
 
Clive
 
junko.yoshida
 
junko.yoshida
 
lakehermit
 
TonyTib
 
MeasurementBlues
Most Recent Messages
2/11/2016
1:23:21 PM
Like Us on Facebook
Special Video Section
The LTC®6363 is a low power, low noise, fully differential ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...