Breaking News
Comments
Newest First | Oldest First | Threaded View
Udi.Barzilai
User Rank
Author
re: Myths, hype and the building blocks of SoCs
Udi.Barzilai   11/20/2012 2:37:05 PM
NO RATINGS
I honestly don't see the point in measuring the distribution of _die_area_ between new/reused design and memory. Die area may influence cost models, yields etc but has little bearing on the design realted aspects of a chip. One can fill 90% of a chip with replicated memory banks, using almost no design effort. Memory doesn't need to be functionally or formally verified. Doesn't need to be timing-closed. Doesn't need gate-level simulations. Integration of memory into a design is normally straightforward. Memory should simply be left out of any discussion regarding "innovation in hardware being constrained". Memory aside, we are left with new vs. reused blocks. Even here die area is of little value in the discussion, since if I have 12 hardened CPU cores replicated in my design, they may dominate the die area and still be a negligible part of the project when measured in design effort (= schedule, = investment, ~ innovation). Just removing memories from the graphs in the article will show that while there is a clear increase in the die area share of reused designs, it is not a sharp exponential trend and the ratio just transitioned from ~40:60 to ~60:40 over 2 decades. This is by no means a _fundamental_ change of the industry. Keeping in mind that due to replication, die area is at best an "inaccurate" indicator of design effort / innovation, I don't think any serious conclusion can be drawn about the subject purely from die-area data.



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
The quality and reliability of Mill-Max's two-piece ...
01:34
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...