Design Con 2015
Breaking News
Comments
Oldest First | Newest First | Threaded View
helgerud
User Rank
Rookie
re: The efficient implementation of asynchronous logic in COTS FPGAs
helgerud   1/5/2013 3:27:12 PM
NO RATINGS
Hi Interesting article. I have designed a few self-timed logic circuits, and as long as the loop gains are sufficient they work fine. As far as I know, it is the only way to completely eliminate the probability for metastate. However, I never made self-timed logic in an FPGA, because the LUT is implemented using a small RAM. This could generate unpredictable spikes on the output when more than one address bit changes concurrently. How do you avoid this? Rgds. Per Helgerud

Garcia-Lasheras
User Rank
Blogger
re: The efficient implementation of asynchronous logic in COTS FPGAs
Garcia-Lasheras   1/5/2013 8:40:37 PM
NO RATINGS
Hi Per, this is a very good question. When working with fully asynchronous design (delay insensitive approach), latches/keepers are used instead of conventional clocked Flip-Flops. In this kind of circuit, dimensioning loop gains by controlling CMOS transistor parameters is critical to minimize the probability of reaching a metastable state. When working over COTS devices, the transitor customization option simply dissapears so, as you note, there are limitations to the set of asynchronous methodologies that can be implemented in an optimal (and secure!!) way. As stated in the article, the design methodology used in the AsyncArt project is mostly inspired in the Sutherland's micropipeline. This kind of circuits relies in the bundled-data approach, in which the datapath is implemented with conventional digital logic and only the data flow control is constructed with delay insensitive asynchronous logic. There are plenty of Flip-Flop resources in any FPGA, so these pieces of logic are used intensively in our designs not only for storing datapath values, but even for keeping the asynchronous dataflow control states too. By this way, LUT based asynchronous logic is in charge of generating perfectly coordinated clock shots (or bursts) that feed the clock input of different Flip-Flop domains when the associated datapath segment need to perform any task. In order to verify the correct behaviour of these FF + LUT based design approach, intensive stress tests have been conducted in several FPGA devices. In these tests, the devices were left running at maximum speed for more than a week and no failure was detected. It's interesting to note that not only RAM LUT based devices have been tested (Xilinx's Spartan/Virtex & Altera's Cyclone): FLASH LUT based devices performed correctly too (Microsemi ‘s -formerly Actel- ProAsic/Fusion). Best regards, Javi



Top Comments of the Week
Flash Poll
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Max Maxfield

Want a Voltera Desktop PCB Printer?
Max Maxfield
7 comments
I just received an email from my chum Javi in Spain. "Have you heard about Voltera (VolteraInc.com)? It's a Canadian company that is going to offer desktop-size PCB printers for fast ...

Martin Rowe

No 2014 Punkin Chunkin, What Will You Do?
Martin Rowe
2 comments
American Thanksgiving is next week, and while some people watch (American) football all day, the real competition on TV has become Punkin Chunkin. But there will be no Punkin Chunkin on TV ...

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
15 comments
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Martin Rowe

Book Review: Controlling Radiated Emissions by Design
Martin Rowe
1 Comment
Controlling Radiated Emissions by Design, Third Edition, by Michel Mardiguian. Contributions by Donald L. Sweeney and Roger Swanberg. List price: $89.99 (e-book), $119 (hardcover).

Special Video Section
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.
Recently formed Architects of Modern Power consortium ...
Specially modified Corvette C7 Stingray responds to ex Indy ...
Avago’s ACPL-K30T is the first solid-state driver qualified ...
NXP launches its line of multi-gate, multifunction, ...
Doug Bailey, VP of marketing at Power Integrations, gives a ...
See how to ease software bring-up with DesignWare IP ...
DesignWare IP Prototyping Kits enable fast software ...
This video explores the LT3086, a new member of our LDO+ ...
In today’s modern electronic systems, the need for power ...