Design Con 2015
Breaking News
Comments
Newest First | Oldest First | Threaded View
Page 1 / 3   >   >>
SRS Prabaharan
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
SRS Prabaharan   4/11/2013 7:40:27 AM
NO RATINGS
read my above comment at the middle as "..... although possessing wonderful high energy"....

SRS Prabaharan
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
SRS Prabaharan   4/11/2013 7:15:01 AM
NO RATINGS
I agree with DrQuine. Yes, you are right. Every individual cell inside the battery compartment of Li-Ion pack must be individually monitored using the fuel gauge Li-Ion cell over charge/discharge algorithm embedded in the SOC (system on chip) to monitor the state of charge (SoC) of individual Li-Ion cell. If one of the cells over charged or discharged for some reason, one can't prevent the cell from deterioration as the over charged/discharged situation initiates electrolyte (aportic) decomposition which will result in the gas evolution and pressure being built up in every further charge/discharge cycles till it explodes. I think this must have been the issue in Dreamliner case. Battery chemistry must be associated with external electronic control system such as a charger with CC-CV protocol. Hence, Li-Ion cell, although possessing wondering high energy density with high working voltage, the danger comes from many different angle but with one particular issue (over charging)!! Moreover, Anode side (perhaps graphitic carbon or Si-Sn-C composite) should not be over lithiated due to over charging as it the anode in Li-Ion cell is limited (so-called anode limitation to avoid formation of metallic lithium. Hence, a variety of cell issues emanated pausibly from the cell itself. If the latter is ensured, SoC monitoring circuit must have the appropriate CC-CV (constant current-constant voltage) protol. Any comments?

52634
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
52634   2/2/2013 11:35:40 AM
NO RATINGS
PHW_#1 I disagree. http://en.wikipedia.org/wiki/Lithium_iron_phosphate_battery gives the reasons why I said LiFePO4 is the safer chemistry. It would be my guess that there is a heater circuit in this battery, because very cold batteries perform poorly. DrQuine - in a multi-series-cell battery, then it is usual to monitor the individual cell voltages. The Dreamliner battery is comprised of 8 series cells and I think you can see pairs of wires connected to each cell that I guess are for monitoring cell voltages. See slide 9 and zoom in http://www.ntsb.gov/investigations/2013/boeing_787/JAL_B-787_1-24-13.pdf

PHW_#1
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
PHW_#1   1/29/2013 3:41:12 AM
NO RATINGS
Please stop thinking Lithium Iron Phosphate won't have same issues. Byd and Volts cases are all Lithium Iron phosphate batteries. They can cause fires even the "trigger points" might be different. It is not clear to me how to prevent it re-ocurrung for BYD or Volt cases yet. And GM has a burnt battery lab. All Li batteries need to be very careful about electronics-charge/discharge/BMS design and very good thermal dissipation design. I will assume the batteries used for airplane power start, the cranking current is quite high. Only a few chemsitry left for such application and at low temperature environment LiFexOy is not a good choice. If it is charger or thermal design issues, same thing will happen in any chemistry. A great engineering challenge for us to fix this problem. I am more concerned that Li-battery might be dumped in Boeing design before they figure out the reasons.

DrQuine
User Rank
CEO
re: 787 Dreamliner investigation probes battery-charging electronics
DrQuine   1/29/2013 1:26:43 AM
NO RATINGS
Is there any mechanism to monitor voltages in individual cells rather than just the series sum of all the cells? If one or two cells are faulty (or shorted out), the standard charging voltage across the entire battery could produce an over voltage condition in the remaining functional cells.

52634
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
52634   1/27/2013 2:41:26 PM
NO RATINGS
The Japan airlines fire started when the plane was on the ground and being cleaned. What event happened during that time I would like to know. Is this when the charger kicked in? I don't know. Also wonder how cold the batteries get when the plane is in the air, or if there is a battery heater function in the design.

KRS03
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
KRS03   1/27/2013 2:00:24 AM
NO RATINGS
It seems that no one suspects the effects of flight. Batteries and charging systems were probably tested extensively on the ground - at sea level, but possibly not at altitude. Also, the comment about lightning strikes seems particularly relevant.

KRS03
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
KRS03   1/27/2013 1:52:19 AM
NO RATINGS
It was recently reported, claim is that it was a pre-production model. Likely the same bugs were the seeds of destruction.

52634
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
52634   1/26/2013 4:55:23 PM
NO RATINGS
The NTSB site linked to in the article has some interesting info - it shows a report that has a photo of a battery cell with a "damaged electrode - internal s/c." The battery chemistry used is Lithium Cobalt Oxide. I would have expected the safter Lithium Iron Phosphate to be used instead (or another, safer-chemistry type available) in this safety critical application. For my money, this is one of the key factors that I would expect to see them change in future designs. I tried to see from the photos what (if any) power conversion electronics were in the battery box, but couldn't see any high-power, only two low power, circuit boards. Where is the battery charger located? Is it underneath the cells? The bus bars disappear to the underside of the housing and it is difficult to see what is down there. The battery charger power electronics is of course another suspect in the picture I am sure. Igor1327 is right - normally LiIon cells have integrated OV, UV and Over-Current protection, per cell. External OV protection per cell and external over current protection is also added. I believe you can see the OV protection in the photo of the undamaged unit - it is the loom of small gauge wires connected to each cell's bus bar. Also, integrating a thermistor per cell is standard practice to prevent over-heating. Electrically this should protect it. What I wonder if the fault was in the electrochemistry of the battery + electrodes, then maybe the protection electronics is out of the picture because it cannot protect against a chemical reaction that has started, only against volts, amps. Looking at the picture of the fire damaged battery box, then the cell top-right corner, second one down, looks more damaged than the others.

Rayking
User Rank
Rookie
re: 787 Dreamliner investigation probes battery-charging electronics
Rayking   1/24/2013 11:49:00 AM
NO RATINGS
"...the APU battery did not exceed its designed voltage of 32 volts. " do not guaranteed each cells inside the APU battery have not been overcharged. It is dangerous ,if the charger over charge protection were controlled by voltage of the APU battery , instead of voltage of each cells.

Page 1 / 3   >   >>


Top Comments of the Week
Flash Poll
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
<b><a href=Betajet">

The Circle – The Future's Imperfect in the Present Tense
Betajet
Post a comment
The Circle, a satirical, dystopian novel published in 2013 by San Francisco-based writer Dave Eggers, is about a large, very powerful technology company that combines aspects of Google, ...

Max Maxfield

Recommended Reads From the Engineer's Bookshelf
Max Maxfield
2 comments
I'm not sure if I read more than most folks or not, but I do I know that I spend quite a lot of time reading. I hate to be idle, so I always have a book or two somewhere about my person -- ...

Martin Rowe

No 2014 Punkin Chunkin, What Will You Do?
Martin Rowe
2 comments
American Thanksgiving is next week, and while some people watch (American) football all day, the real competition on TV has become Punkin Chunkin. But there will be no Punkin Chunkin on TV ...

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
15 comments
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Special Video Section
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.
Recently formed Architects of Modern Power consortium ...
Specially modified Corvette C7 Stingray responds to ex Indy ...
Avago’s ACPL-K30T is the first solid-state driver qualified ...
NXP launches its line of multi-gate, multifunction, ...
Doug Bailey, VP of marketing at Power Integrations, gives a ...
See how to ease software bring-up with DesignWare IP ...
DesignWare IP Prototyping Kits enable fast software ...
This video explores the LT3086, a new member of our LDO+ ...
In today’s modern electronic systems, the need for power ...