Breaking News
Comments
Newest First | Oldest First | Threaded View
hthibieroz
User Rank
Author
re: Stars of DesignCon: Behavioral modeling aids analog/mixed-signal
hthibieroz   2/28/2013 5:36:57 PM
NO RATINGS
Hello, I wrote a summary at http://bit.ly/WjRxZT

hthibieroz
User Rank
Author
re: Stars of DesignCon: Behavioral modeling aids analog/mixed-signal
hthibieroz   1/31/2013 4:51:20 PM
NO RATINGS
Frank, It was indeed a great panel. I had panelists from various background experts in their areas sharing their opinions on various questions pertinent to behavioral modeling- from IBIS/IBIS-AMI to VerilogAMS and real number modeling. The panel was really well received and there was a lot of interesting reactions in the audience. I will generate a summary because some of the questions that I asked triggered really interesting responses. Regarding your comment, there is definitively a push to move the simulation entirely in the digital space. However, I do believe, that depending of what your end goal is (functional verification/ first path or need for more analog accuracy), simulating only using a digital solver (using behavioral verilog or real number modeling) may not be enough and you may have to deal with a mixed flow.

old account Frank Eory
User Rank
Author
re: Stars of DesignCon: Behavioral modeling aids analog/mixed-signal
old account Frank Eory   1/29/2013 7:47:00 PM
NO RATINGS
I bet this was a great panel discussion. Wish I could've attended. BTW, as cool as Verilog-AMS is, it is still awfully slow for a transient simulation with a lot of high frequency events. For chip-level verification of an AMS IC, we have had good results just modeling analog blocks in behavioral Verilog. You can make those models as simple or as detailed as you like, and still maintain essentially the same fast simulation times as a pure digital Verilog RTL simulation.

Daniel Payne
User Rank
Author
re: Stars of DesignCon: Behavioral modeling aids analog/mixed-signal
Daniel Payne   1/29/2013 4:25:21 PM
NO RATINGS
I think that you meant to say that Verilog-AMS was derived from the IEEE 1364 Verilog HDL specification, however your article says it was derived from VHDL. http://www.accellera.org/activities/committees/verilog-ams/about/



Radio
LATEST ARCHIVED BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Like Us on Facebook
Special Video Section
With design sizes expected to increase by 5X through 2020, ...
01:48
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...