Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
AKH0
User Rank
Author
re: London Calling: FDSOI clocks at 3GHz
AKH0   2/22/2013 2:10:33 AM
NO RATINGS
SOITEC provides 12nm wafers because they are asked to. It's not that they are limited to 12nm and manufacturers have to take the extra burden of thinning the wafer to the desired thickness. You need a few nm as a part of STI formation (so-called padox) and a few nm for thick oxide devices and HK gate pre-clean. All these steps are precise oxidation steps that have been used in in the industry for many years to form the gate oxide (which has been by far the most uniform process step in ic manufacturing).

michigan0
User Rank
Author
re: London Calling: FDSOI clocks at 3GHz
michigan0   2/21/2013 1:21:07 AM
NO RATINGS
IBM invented PDSOI, FDSOI, and E (extremely)T (thin) SOI technologies over twenty years of time period. PDSOI was very successful products. IBM and its SOI Consortium have spent enormous resources and efforts for volume manufacture of FDSOI and ETSOI including UTBB, but have not been successful. No FDSOI is manufactured at any node even today or the 22nm era. The major reason is for the 28 node a 7nm and for 22nm node 5.5nm extremely thin channel ETSOI are required to suppress the transistor leakage current or short channel effects. However, such ultra-thin 7nm and 5.5 nm ETSOI canít be manufactured by Soitec. What Soitec can deliver today is 28nm SOI wafers with minimum channel thickness of 12nm and 25nm buried oxide. Therefore, STMís repeated claims to have advantages over planar bulk CMOS and FinFETs in performance, power consumption and manufacturability are not justified because the 28nm planar bulk is in high volume manufacturing over 3 years and Intelís FinFETs are also in high volume manufacturing for almost 2 years, but STMís FDSOI is not manufactured yet and not likely. STMís 28nm wafer process sounds like etching back 5nm silicon from the 12nm silicon film to obtain a final 7nm. My question is such an extremely thin 5nm silicon can be etched back to obtain a final 7nm uniformly and reliably across the 300mm wafer in volume manufacturing. It sounds like a test chip or test wafer process. The published 7nm and 6nm data is test chip or test wafer data. STM claims it is qualified for production.



Top Comments of the Week
Flash Poll
Radio
LATEST ARCHIVED BROADCAST
EE Times Senior Technical Editor Martin Rowe will interview EMC engineer Kenneth Wyatt.
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Special Video Section
After a four-year absence, Infineon returns to Mobile World ...
A laptopís 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.
Recently formed Architects of Modern Power consortium ...
Specially modified Corvette C7 Stingray responds to ex Indy ...
Avagoís ACPL-K30T is the first solid-state driver qualified ...
NXP launches its line of multi-gate, multifunction, ...