Design Con 2015
Breaking News
Comments
michigan0
User Rank
CEO
re: London Calling: FDSOI clocks at 3GHz
michigan0   2/21/2013 1:21:07 AM
NO RATINGS
IBM invented PDSOI, FDSOI, and E (extremely)T (thin) SOI technologies over twenty years of time period. PDSOI was very successful products. IBM and its SOI Consortium have spent enormous resources and efforts for volume manufacture of FDSOI and ETSOI including UTBB, but have not been successful. No FDSOI is manufactured at any node even today or the 22nm era. The major reason is for the 28 node a 7nm and for 22nm node 5.5nm extremely thin channel ETSOI are required to suppress the transistor leakage current or short channel effects. However, such ultra-thin 7nm and 5.5 nm ETSOI canít be manufactured by Soitec. What Soitec can deliver today is 28nm SOI wafers with minimum channel thickness of 12nm and 25nm buried oxide. Therefore, STMís repeated claims to have advantages over planar bulk CMOS and FinFETs in performance, power consumption and manufacturability are not justified because the 28nm planar bulk is in high volume manufacturing over 3 years and Intelís FinFETs are also in high volume manufacturing for almost 2 years, but STMís FDSOI is not manufactured yet and not likely. STMís 28nm wafer process sounds like etching back 5nm silicon from the 12nm silicon film to obtain a final 7nm. My question is such an extremely thin 5nm silicon can be etched back to obtain a final 7nm uniformly and reliably across the 300mm wafer in volume manufacturing. It sounds like a test chip or test wafer process. The published 7nm and 6nm data is test chip or test wafer data. STM claims it is qualified for production.

AKH0
User Rank
Manager
re: London Calling: FDSOI clocks at 3GHz
AKH0   2/22/2013 2:10:33 AM
NO RATINGS
SOITEC provides 12nm wafers because they are asked to. It's not that they are limited to 12nm and manufacturers have to take the extra burden of thinning the wafer to the desired thickness. You need a few nm as a part of STI formation (so-called padox) and a few nm for thick oxide devices and HK gate pre-clean. All these steps are precise oxidation steps that have been used in in the industry for many years to form the gate oxide (which has been by far the most uniform process step in ic manufacturing).



Flash Poll
Top Comments of the Week
Like Us on Facebook
EE Times on Twitter
EE Times Twitter Feed

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Max Maxfield

Want to Present a Paper at ESC Boston 2015?
Max Maxfield
8 comments
I tell you, I need more hours in each day. If I was having any more fun, there would have to be two of me to handle it all. For example, I just heard that I'm going to be both a speaker ...

Martin Rowe

No 2014 Punkin Chunkin, What Will You Do?
Martin Rowe
Post a comment
American Thanksgiving is next week, and while some people watch (American) football all day, the real competition on TV has become Punkin Chunkin. But there will be no Punkin Chunkin on TV ...

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
12 comments
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Martin Rowe

Book Review: Controlling Radiated Emissions by Design
Martin Rowe
1 Comment
Controlling Radiated Emissions by Design, Third Edition, by Michel Mardiguian. Contributions by Donald L. Sweeney and Roger Swanberg. List price: $89.99 (e-book), $119 (hardcover).