Breaking News
Comments
Newest First | Oldest First | Threaded View
Duane Benson
User Rank
Author
re: IBM developing 'electronic blood' for cooling
Duane Benson   3/18/2013 2:52:42 PM
NO RATINGS
That is a fascinating concept. As I think about it, the phrase "why not?" pops into my head. Provided the areas between the electrodes, not only would you reduce the amount of area required for cooling, but you could have localized power, dramatically reducing the need for supply lines running around the chip. That in itself will reduce heat generated as well.

resistion
User Rank
Author
re: IBM developing 'electronic blood' for cooling
resistion   3/17/2013 8:24:24 AM
NO RATINGS
But electrolyte ionic behavior is temperature sensitive - hope they're not getting mixed up.

MClayton200
User Rank
Author
re: IBM developing 'electronic blood' for cooling
MClayton200   3/14/2013 7:23:17 PM
NO RATINGS
IBM pioneered many of the heat transfer methods for getting heat from very fast chips (like their 1960-70's ECL chips, bipolar not cmos). Water and Freon cooling, thermal-conduction modules of flip chips on stacked ceramic substrates, and of course all the modeling tools with big computers to run them. Glad to see they are still thinking "out of the box." Hope all this data transfer is LOCAL. One nanosecond is one light-foot. Every foot of wiring adds one nanosecond of delay (I have been told) Cray kept his fortran engines small and liquid cooled, with all interconnect lengths minimized. Optical or not, electrons or photons, cannot exceed speed of light. Right? Correct me if I am wrong please.

dino_f
User Rank
Author
re: IBM developing 'electronic blood' for cooling
dino_f   3/13/2013 7:45:08 AM
NO RATINGS
cool

fionaqq
User Rank
Author
re: IBM developing 'electronic blood' for cooling
fionaqq   3/13/2013 3:01:58 AM
NO RATINGS
Astron is Netherlands Institute for Radio Astronomy (NIRA).

PV-Geek
User Rank
Author
re: IBM developing 'electronic blood' for cooling
PV-Geek   3/12/2013 9:31:24 PM
NO RATINGS
Maybe it is more accurate to define true "cognitive computing" as a a non-precise, non-provable methodology. Just as the human brain is non-precise and non-provable, I don't think anyone would characterize it as non-useful. If you think of some of the applications IBM has been targeting, "Watson" for example, they are trying to get a system that is good at "guessing." It works for Jeopardy and for medical diagnosis. In fact, most of us depend on the Google search engine than anything else in our computer. Maybe the constraints of precision and provability that we have applied to computing systems is what is holding us back.

Sparky_Watt
User Rank
Author
re: IBM developing 'electronic blood' for cooling
Sparky_Watt   3/12/2013 5:12:28 PM
NO RATINGS
I like the approach to increasing circuit density. I really doubt that "cognitive computing" is mature enough for this yet. The weakness of "cognitive computing" is not that it requires a lot of gigaflops (although it does). It's weakness is that it isn't provably correct. If a cognitive computer translates a massive array of signals into an image, how do we know that the resulting image is accurate? Is that feature really there, or did the cognitive computer just "want" to put it there. Don't get me wrong, I am not mysticalizing this. The truth is, the more pattern recognition is part of an analysis, the greater the chance that an incorrectly recognized pattern will be a fundamental part of the result.

Francois R
User Rank
Author
re: IBM developing 'electronic blood' for cooling
Francois R   3/12/2013 3:53:21 PM
NO RATINGS
Certainly a long shot, but we need these kind of futuristic concepts if we want evolution to go ahead

mcgrathdylan
User Rank
Author
re: IBM developing 'electronic blood' for cooling
mcgrathdylan   3/12/2013 5:45:20 AM
NO RATINGS
Agree. This could be very interesting to watch.

daleste
User Rank
Author
re: IBM developing 'electronic blood' for cooling
daleste   3/12/2013 3:49:52 AM
NO RATINGS
Very interesting concept. I hope they succeed.



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...
Chwan-Jye Foo (C.J Foo), product marketing manager for ...