Embedded Systems Conference
Breaking News
User Rank
re: The Dreamliner saga: When your solution is more than just a software patch
Bert22306   4/23/2013 8:41:32 PM
Bill, I think it has been pretty well determined that the problem is an internal battery problem, not one of charging circuits or of load gone amuk. The fix aims to eliminate the risk of cell problems creating a hazard, and it also reduces the amount of electrical stress the cells are subjected to overall (e.g. allowing less discharge than before, and also less charge than before). I can't imagine the hectic work environment those 200 engineers have been subjected to, in these months, to come up with a viable solution. And I can only guess at how many "I told you so"s there must have been, among many of these engineers, concerning the decision to go with Li-Ion to begin with? That's just a wild guess, I admit. I sure don't envy them.

User Rank
re: The Dreamliner saga: When your solution is more than just a software patch
RGARVIN640   4/25/2013 3:08:33 AM
The only real question is why all this was allowed to happen when they had problems during the initial testing of the Li-ion sub-system? All this could have been avoided if they had fixed the problems then.

User Rank
re: The Dreamliner saga: When your solution is more than just a software patch
adornao   3/12/2014 3:54:53 AM
The flight data recorders don't contain the information from the battery monitoring unit which is responsible for battery state of charge, over charge, discharge, battery balancing, ... (Or basically every battery safety related function). The main thing noted in the event log is that the APU bus failed repeatedly and the charger attempted a number of high current charges before the entire system failed due to the battery likely catching fire. The main question I have is that none of the investigation or reports appear to inspect the firmware and design of the monitoring and safety circuit.

The main protection contactor internal to the battery was closed but not welded closed which means the BMU failed to detect cell 6's failure and did not inhibit the BCU from charging the battery (Altering the charge parameters is probably a good idea and the upgrade kit replaces the charger entirely so it is likely that the charge rates were poorly thought out).

The fact there where only two temperature sensors for the entire battery is below the standard safety thershold for battery monitoring which is good design practice to have at least one sensor per battery (especially when they are large cells and thermal lag between cells makes dual sensors insufficent to detect high internal cell temperatures)

Ideally for an aviation battery it should have two sensors per battery and individual cell protection circuits that can individually drop a cell off the stack as to not kill all power to the systems. This method would be far more fail safe and would fail gradually and provide series protection on top of the battery pack protection (Much smarter battery charge control would also be a good idea).

The main thing that stood out to me is that the 1 volt drop in pack voltage was likely the cell 6 failing and the BMU should have inhibited the BCU from attempting a 40+ Amp charge. This is an obvious and recorded firmware bug in the BCU which has not been investigated or fixed.

Compared to Toyota, Beoing seems to be getting off far too easy on what is essentially the last line of defense in a basically all-electric plane (Putting it in a stainless steal box doesn't fix the problem and in Jan 2014 another battery failed just inside the magic box). (No APU battery = No APU start without engine AC power which in a birdstrike situation similar to US Airways Flight 1549)

Boeing's solution to an obviously defective and still defective battery pack is not a software patch but a duct tape non-fix of putting it in a flame box so when it catches fire it doesn't spill everwhere. If a 787 crashes because of loss of battery backups the "fix" won't help one bit.

(Its a software and hardware bug and no one is bothering to fix it they just keep adding insulation and boxes inside of boxes...)

We have the media, lawyers, and "experts" jumping up and down over a non-issue car ECU but nothing on a clearly non-fixed system with no final report for another year and no root cause and no fix. We should just make it law to open source safety critical fail safe detection methods so no one can complain about it being unknown/unfair. (No need for everything just require publishing the raw code that runs the failsafes and a spec on how that is integrated in hardware)

User Rank
re: The Dreamliner saga: When your solution is more than just a software patch
Loser99   4/29/2013 9:02:21 PM
You know its not really fixed. They never figured out what the problem was.

Duane Benson
User Rank
re: The Dreamliner saga: When your solution is more than just a software patch
Duane Benson   4/29/2013 10:58:09 PM
It may or may not really be fixed. But the challenge is in defining the term "fixed." jet fuel is an incredibly dangerous material. It hasn't been fixed, but the vehicle has been designed to accommodate and contain that danger as much as possible. Time will tell if the steps Boeing took will prevent battery fires all together, but my guess is that they have just reduced the probability of a battery fire and designed in containment measures in the event of a fire. That may seem like poor quality hack and patch engineering. But, if it is, then you would have to say that any device that depends on a volatile fuel or high voltage electricity is just hack & patch engineering because the danger hasn't been remove from any of that. It's just been mitigated and contained.

User Rank
re: The Dreamliner saga: When your solution is more than just a software patch
Loser99   4/30/2013 3:28:42 PM
It's still not fixed.

In conjunction with unveiling of EE Times’ Silicon 60 list, journalist & Silicon 60 researcher Peter Clarke hosts a conversation on startups in the electronics industry. One of Silicon Valley's great contributions to the world has been the demonstration of how the application of entrepreneurship and venture capital to electronics and semiconductor hardware can create wealth with developments in semiconductors, displays, design automation, MEMS and across the breadth of hardware developments. But in recent years concerns have been raised that traditional venture capital has turned its back on hardware-related startups in favor of software and Internet applications and services. Panelists from incubators join Peter Clarke in debate.
Most Recent Comments
David Ashton
Flash Poll
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Special Video Section
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.