Breaking News
Comments
Newest First | Oldest First | Threaded View
AKH0
User Rank
Author
re: FDSOI gains three design wins
AKH0   5/28/2013 6:07:52 PM
NO RATINGS
The relatively lower drive current of 28FD has nothing to do with thin Si channel. It's the lack of strain elements that hurts the device. Strain elements are part of 14FD and impressive HW data is already shown (at VLSI and IEDM last year), with AC performance surpassing 22nm FinFET. There is no barrier in adding such elements in a 28nm FDSOI technology, the same way there are 3 versions of 28nm bulk technology.

aotearoan
User Rank
Author
re: FDSOI gains three design wins
aotearoan   5/22/2013 3:27:23 PM
NO RATINGS
ST (not TS) seems to be betting the digital part of the house on FDSOI. For BigD, paricularly low power, it may actually work, as long as you don't need exotic analog IP - FDSOI gets kinky with analog.

kjdsfkjdshfkdshfvc
User Rank
Author
re: FDSOI gains three design wins
kjdsfkjdshfkdshfvc   5/20/2013 3:04:42 PM
NO RATINGS
What was the outcome? http://bit.ly/IC4m9t

Chipguy1
User Rank
Author
re: FDSOI gains three design wins
Chipguy1   5/20/2013 12:04:40 PM
NO RATINGS
Yes the thin silicon in FDSOI results in very very low transistor current compared to bulk transistors. The ST 28nm FDSOI current is about 50% lower compared to 28HPM. That is a fundamental issue for circuit blocks

michigan0
User Rank
Author
re: FDSOI gains three design wins
michigan0   5/20/2013 3:59:19 AM
NO RATINGS
IBM invented PDSOI, FDSOI, ET(extremely thin) SOI technologies. The PDSOI was very successful, but FDSOI including UTBB and ETSOI are not in manufacturing at any technology node today. This is because one of the critical issues with FDSOI is its scalerability. For the 28nm FDSOI a very thin SOI thickness or transistor channel thickness of 7nm is required to suppress its transistor leakage current, while for the 28nm planer bulk the transistor channel thickness is controlled by a combination of halo and retrograded implants, providing a fully depleted and significantly deeper than 7nm. That is why the planer bulk 28nm has been in high volume manufacturing by Intel, and major foundries for over two years. ST claimed last year that its 28nm FDSOI was ready for manufacturing, but is not yet. ST's 28nm FDSOI seems to be too late to inter the 28nm node market unless its 28nm FDSOI is superier to the planer bulk 28nm. Intel's 22nm FinFETs are in high Volume manufacturing over a year. But Chery dosn't say when ST will manufacture the 22nm FDSOI even though he has claimed on FDSOI having advantage over bulk CMOS or FinFET process. For the 22nm FDSOI the SOI thickness even thinner 4.5nm is required to suppress the transistor leakage current. Comparatively, for the 22nnm FinFET the Fin widh of 22nm that is equivalent to the FDSOI thicknesses of 4.5nm is required. What a big difference! That is why Intel's 22nm FinFETs are in high volume manufacturing over a year, but not 22nm FDSOI, and having difficulties in manufacturing even 28nm FDSOI. Skim

HS_SemiPro
User Rank
Author
re: FDSOI gains three design wins
HS_SemiPro   5/18/2013 4:55:16 AM
NO RATINGS
For years Taiwan semi has stayed a step behind learning from mistakes of others, taking the lead entails some risk, which is showing up in their effort to catch up and surpass intel and others

microchip1
User Rank
Author
re: FDSOI gains three design wins
microchip1   5/17/2013 8:02:54 PM
NO RATINGS
The reason SOI is looking more attractive is the lack of value for Taiwan Semi 16. From 20 to 16 die size does not shrink (even slightly bigger for many blocks) I just don't see who is going to pay more for a wafer if die size does not shrink. By definition...there is no Moore's Law from 20 to 16. I don't get Taiwan semi's road map anymore



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Most Recent Comments
dnadler017
 
realjjj
 
realjjj
 
jimfordbroadcom
 
jimfordbroadcom
 
resistion
 
jimfordbroadcom
 
jimfordbroadcom
 
realjjj
Like Us on Facebook
Special Video Section
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...