Embedded Systems Conference
Breaking News
Comments
Oldest First | Newest First | Threaded View
microchip1
User Rank
Author
re: FDSOI gains three design wins
microchip1   5/17/2013 8:02:54 PM
NO RATINGS
The reason SOI is looking more attractive is the lack of value for Taiwan Semi 16. From 20 to 16 die size does not shrink (even slightly bigger for many blocks) I just don't see who is going to pay more for a wafer if die size does not shrink. By definition...there is no Moore's Law from 20 to 16. I don't get Taiwan semi's road map anymore

HS_SemiPro
User Rank
Author
re: FDSOI gains three design wins
HS_SemiPro   5/18/2013 4:55:16 AM
NO RATINGS
For years Taiwan semi has stayed a step behind learning from mistakes of others, taking the lead entails some risk, which is showing up in their effort to catch up and surpass intel and others

michigan0
User Rank
Author
re: FDSOI gains three design wins
michigan0   5/20/2013 3:59:19 AM
NO RATINGS
IBM invented PDSOI, FDSOI, ET(extremely thin) SOI technologies. The PDSOI was very successful, but FDSOI including UTBB and ETSOI are not in manufacturing at any technology node today. This is because one of the critical issues with FDSOI is its scalerability. For the 28nm FDSOI a very thin SOI thickness or transistor channel thickness of 7nm is required to suppress its transistor leakage current, while for the 28nm planer bulk the transistor channel thickness is controlled by a combination of halo and retrograded implants, providing a fully depleted and significantly deeper than 7nm. That is why the planer bulk 28nm has been in high volume manufacturing by Intel, and major foundries for over two years. ST claimed last year that its 28nm FDSOI was ready for manufacturing, but is not yet. ST's 28nm FDSOI seems to be too late to inter the 28nm node market unless its 28nm FDSOI is superier to the planer bulk 28nm. Intel's 22nm FinFETs are in high Volume manufacturing over a year. But Chery dosn't say when ST will manufacture the 22nm FDSOI even though he has claimed on FDSOI having advantage over bulk CMOS or FinFET process. For the 22nm FDSOI the SOI thickness even thinner 4.5nm is required to suppress the transistor leakage current. Comparatively, for the 22nnm FinFET the Fin widh of 22nm that is equivalent to the FDSOI thicknesses of 4.5nm is required. What a big difference! That is why Intel's 22nm FinFETs are in high volume manufacturing over a year, but not 22nm FDSOI, and having difficulties in manufacturing even 28nm FDSOI. Skim

Chipguy1
User Rank
Author
re: FDSOI gains three design wins
Chipguy1   5/20/2013 12:04:40 PM
NO RATINGS
Yes the thin silicon in FDSOI results in very very low transistor current compared to bulk transistors. The ST 28nm FDSOI current is about 50% lower compared to 28HPM. That is a fundamental issue for circuit blocks

kjdsfkjdshfkdshfvc
User Rank
Author
re: FDSOI gains three design wins
kjdsfkjdshfkdshfvc   5/20/2013 3:04:42 PM
NO RATINGS
What was the outcome? http://bit.ly/IC4m9t

aotearoan
User Rank
Author
re: FDSOI gains three design wins
aotearoan   5/22/2013 3:27:23 PM
NO RATINGS
ST (not TS) seems to be betting the digital part of the house on FDSOI. For BigD, paricularly low power, it may actually work, as long as you don't need exotic analog IP - FDSOI gets kinky with analog.

AKH0
User Rank
Author
re: FDSOI gains three design wins
AKH0   5/28/2013 6:07:52 PM
NO RATINGS
The relatively lower drive current of 28FD has nothing to do with thin Si channel. It's the lack of strain elements that hurts the device. Strain elements are part of 14FD and impressive HW data is already shown (at VLSI and IEDM last year), with AC performance surpassing 22nm FinFET. There is no barrier in adding such elements in a 28nm FDSOI technology, the same way there are 3 versions of 28nm bulk technology.



Radio
NEXT UPCOMING BROADCAST
In conjunction with unveiling of EE Times’ Silicon 60 list, journalist & Silicon 60 researcher Peter Clarke hosts a conversation on startups in the electronics industry. One of Silicon Valley's great contributions to the world has been the demonstration of how the application of entrepreneurship and venture capital to electronics and semiconductor hardware can create wealth with developments in semiconductors, displays, design automation, MEMS and across the breadth of hardware developments. But in recent years concerns have been raised that traditional venture capital has turned its back on hardware-related startups in favor of software and Internet applications and services. Panelists from incubators join Peter Clarke in debate.
Most Recent Comments
Flash Poll
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Special Video Section
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.