Breaking News
Comments
Newest First | Oldest First | Threaded View
resistion
User Rank
Author
re: ST turns to PCM for MCU embedded memory
resistion   5/21/2013 10:40:07 PM
NO RATINGS
Each cell would require mA's of current at 90 nm.

resistion
User Rank
Author
re: ST turns to PCM for MCU embedded memory
resistion   5/18/2013 6:04:55 PM
NO RATINGS
True, retention less than an hour.

Ron Neale
User Rank
Author
re: ST turns to PCM for MCU embedded memory
Ron Neale   5/18/2013 9:32:33 AM
NO RATINGS
With the spin dial always set a maximum when presenting to analysts it would appear that some lessons of the past have been forgotten; blinded perhaps it would appear by the rosy glow of PCM futures selling. The long and more recent history of phase change memory (PCM) has been plagued by claims that Flash memory will not scale, the problem it did and still does. Moving the target from NAND to NOR is again just asking to be proved wrong. I guess the analysts failed to ask the question what is now different in the approach of ST now and why will it not result in the same end point, i.e. the failure of Numonyx and its absorption into Micron. Especially if some of the same cast of characters are involved. Prototyping PCM at 90nm, for 2013, with a 55nm Flash NOR ready for production is an interesting approach. The long search for amorphous PCM materials (inherently meta-stable) that offer thermal stability is again part of PCM history. There is from ST an implied prediction that for the 28nm lithographic node embedded PCM their “progress” will have yielded a result, with a device suitable for all three application areas by 2016. It would also be useful to know what the embedded PCM will offer over the flash NOR, that is the USP. While there is no mention of the planned memory bit capacity for the target applications; from a competitive viewpoint it would appear that MRAM and FeRAM are likely to be serious competitors, whereas for 1Gb they still have some way to go vis-a-vis PCM. It is interesting that for pre-programmed devices it is suggested that melting is the problem. The crystallization temperature for PCM materials is always lower than the melting temperature so I would have thought bits in the pre-programmed amorphous state would be more vulnerable to the effects of soldering.

greenpattern
User Rank
Author
re: ST turns to PCM for MCU embedded memory
greenpattern   5/17/2013 3:32:41 PM
NO RATINGS
It's not likely they will meet the 125 C spec.

resistion
User Rank
Author
re: ST turns to PCM for MCU embedded memory
resistion   5/17/2013 2:39:37 PM
NO RATINGS
28 nm CMOS core voltage not enough to drive PCM.



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
LATEST ARCHIVED BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Most Recent Comments
michigan0
 
SteveHarris0
 
realjjj
 
SteveHarris0
 
SteveHarris0
 
VicVat
 
Les_Slater
 
SSDWEM
 
witeken
Most Recent Messages
9/25/2016
4:48:30 PM
michigan0 Sang Kim First, 28nm bulk is in volume manufacturing for several years by the major semiconductor companies but not 28nm FDSOI today yet. Why not? Simply because unlike 28nm bulk the LDD(Lightly Doped Drain) to minimize hot carrier generation can't be implemented in 28nm FDSOI. Furthermore, hot carrier reliability becomes worse with scaling, That is the major reason why 28nm FDSOI is not manufacturable today and will not be. Second, how can you suppress the leakage currents from such ultra short 7nm due to the short channel effects? How thin SOI thickness is required to prevent punch-through of un-dopped 7nm FDSOI? Possibly less than 4nm. Depositing such an ultra thin film less then 4nm filum uniformly and reliably over 12" wafers at the manufacturing line is extremely difficult or not even manufacturable. If not manufacturable, the 7nm FDSOI debate is over!Third, what happens when hot carriers are generated near the drain at normal operation of 7nm FDSOI? Electrons go to the positively biased drain with no harm but where the holes to go? The holes can't go to the substrate because of the thin BOX layer. Some holes may become trapped at the BOX layer causing Vt shift. However, the vast majority of holes drift through the the un-dopped SOI channel toward the N+Source,...
Like Us on Facebook
Special Video Section
Once the base layer of a design has been taped out, making ...
In this short video we show an LED light demo to ...
The LTC2380-24 is a versatile 24-bit SAR ADC that combines ...
In this short video we show an LED light demo to ...
02:46
Wireless Power enables applications where it is difficult ...
07:41
LEDs are being used in current luxury model automotive ...
With design sizes expected to increase by 5X through 2020, ...
01:48
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...