Design Con 2015
Breaking News
Comments
Oldest First | Newest First | Threaded View
Page 1 / 2   >   >>
3D Guy
User Rank
Manager
re: London Calling: Moore's Law fail at NAND flash node
3D Guy   5/28/2013 3:56:16 PM
NO RATINGS
Maybe SanDisk/Toshiba couldn't get high k working for flash, so they couldn't go to a flat cell and thereby failed to scale down?

any1
User Rank
CEO
re: London Calling: Moore's Law fail at NAND flash node
any1   5/28/2013 5:06:42 PM
NO RATINGS
Peter, I think you have it right. Of course this is all about cost. The profit margins for commodity NAND chips simply are not high enough to justify the costs required to go to a smaller node right now. So the "more than Moore" design optimization was the best/only economical choice. At this point no one is counting on EUV litho coming to the rescue any time soon.

resistion
User Rank
CEO
re: London Calling: Moore's Law fail at NAND flash node
resistion   5/28/2013 6:17:10 PM
NO RATINGS
Well for NAND, the quadruple patterning to 10 nm would not have been more lithography/masks but certainly more process steps. Hynix did ~15 nm at IEDM two years ago. It would have made more sense to do this for both the 1Y and 1Z nodes, with both 1Y and 1Z closer to 10 nm to offset the potential doubling of costs with quadruple compared to double patterning. Now that 1Y is still 19 nm, it doesn't make much sense. Also possible, too close to 10 nm is too big a risk with S-D tunneling.

resistion
User Rank
CEO
re: London Calling: Moore's Law fail at NAND flash node
resistion   5/28/2013 6:19:32 PM
NO RATINGS
I think an even more foreboding implication from Sandisk is that it did NOT pull in 3D NAND, but actually pushed it out two years to 2016.

Ron Neale
User Rank
Blogger
re: London Calling: Moore's Law fail at NAND flash node
Ron Neale   5/29/2013 9:41:17 AM
NO RATINGS
I think what we might want to call the 1M generation should be added to the list. M for Multi-Chip Package (MCP) where chip stacking, with Through Silicon Vias (TSVs) is used to achieve the required doubling of transistor/memory device density and is likely to play a significant role at about the 19-20nm node. In that way, take your pick for MCP or 3D monolithic, a constant chip footprint (area) will be meet the prediction of Moore's Law independent of the lithographic node.

resistion
User Rank
CEO
re: London Calling: Moore's Law fail at NAND flash node
resistion   5/29/2013 11:43:47 AM
NO RATINGS
But the cost is additive not reductive with density.

Wobbly
User Rank
CEO
re: London Calling: Moore's Law fail at NAND flash node
Wobbly   5/29/2013 3:37:45 PM
NO RATINGS
I think in the NAND market you are getting the first indications of working ReRAM. If vendors are moving to a completely new architecture/technology, how hard are they going to push on the current technology?

Peter Clarke
User Rank
Blogger
re: London Calling: Moore's Law fail at NAND flash node
Peter Clarke   5/29/2013 4:22:45 PM
NO RATINGS
@Wobbly Well the general consensus I have heard from the likes of IMEC, SanDisk, Intel is that 3-D NAND replaces 2-D NAND and scales the technology in the vertical direction. Not so much a 1M-nm generation as a 4M-nm generation... And when you hit a limit in the z direction due to the ability to coat the depth of the high aspect ratio through-silicon-wire holes you return to lateral scaling with ReRAM...And by then a more complete understanding of the physics of this resisitve systems may have been achieved.

Jiahui
User Rank
Rookie
re: London Calling: Moore's Law fail at NAND flash node
Jiahui   5/30/2013 5:05:01 PM
NO RATINGS
"Instead SanDisk found a way to improve the memory cell through design — reducing the area by about 25 percent – and without the scaling the geometry." That is a wrong statement because the memory-cell bitline pitch scales down from 26nm to 19.5nm while the wordline pitch remains at 19nm (see press release: http://www.sandisk.com/about-sandisk/press-room/press-releases/2013/sandisk-advances-its-industry-leading-manufacturing-technology/ ). So the core cell size reduction is 25%, and the total chip size reduction is about 20% when periphery is included for a 64Gb 2-bit-per-cell chip. I'm not arguing how long Moore's Law will hold in the future. 1Y could be considered as half a node from 1X. Considering 1x just came out last year, the scaling trend is still pretty impressive. You can also consider 2X to 1Y as a full generation node, and that took less than three years for SanDisk/Toshiba to develop.

bwdodso
User Rank
Rookie
re: London Calling: Moore's Law fail at NAND flash node
bwdodso   5/30/2013 8:28:30 PM
NO RATINGS
Hi, Peter, Why in the world would you call Moore's Law a self-fulfilling prophecy. It is neither, rather being a historical trend on how fast people manage to build new technologies that has had surprisingly significant predictive power. The first time that physics and fabrication technology come into it is (perhaps) when people can't keep up the rate of innovation.

Page 1 / 2   >   >>


Flash Poll
Top Comments of the Week
Like Us on Facebook
EE Times on Twitter
EE Times Twitter Feed

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Max Maxfield

Want to Present a Paper at ESC Boston 2015?
Max Maxfield
8 comments
I tell you, I need more hours in each day. If I was having any more fun, there would have to be two of me to handle it all. For example, I just heard that I'm going to be both a speaker ...

Martin Rowe

No 2014 Punkin Chunkin, What Will You Do?
Martin Rowe
Post a comment
American Thanksgiving is next week, and while some people watch (American) football all day, the real competition on TV has become Punkin Chunkin. But there will be no Punkin Chunkin on TV ...

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
12 comments
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Martin Rowe

Book Review: Controlling Radiated Emissions by Design
Martin Rowe
1 Comment
Controlling Radiated Emissions by Design, Third Edition, by Michel Mardiguian. Contributions by Donald L. Sweeney and Roger Swanberg. List price: $89.99 (e-book), $119 (hardcover).