Embedded Systems Conference
Breaking News
Oldest First | Newest First | Threaded View
<<   <   Page 5 / 5
User Rank
Re: Moore's Law....
jaybus0   9/3/2013 10:55:15 AM
I agree. The fact that relativistic physics is needed to explain the observed orbit of Mercury does not prevent us from teaching Newton's laws of motion. A philosophical question is whether or not we SHOULD teach Newton's laws. Note that we still refer to those equations as Newton's "laws", though they are known to inadequately describe observed reality. In other words, Newton's laws of motion describe motions that are physically impossible. It is quite possible that Einstein's laws will also be shown to have inaccuracies. So, another philosophical question is just how close to observed reality does an equation have to be in order to be considered a law?

User Rank
Re: Moore's Law Dead by 2022, Expert Says
michigan0   9/16/2013 4:42:04 PM

I disagree with Colwell"s statement,"when Moore's law stops it will be economics that stops it, not physics". Based on the transistor physics, the short channel effect or transistor leakage current will increase as the transistor is scaled. Today we have only three process technologies: Bulk Si, FDSOI and FinFET. Bulk Si technology is in high volume manufacturing at the 28nm node for several years by major semiconductor companies, and may extend to the 22nm, but with excessive transistor leakage current, thus definitely not beyond the 22nm. FDSOI is invented by IBM more than 10 years ago, but not manufacturable at any technology node yet mainly because Soitech, the largest SOI wafer supplier can't deliver 7nm thin SOI that is required for the 28nm node. It means that FDSOI is already dead and Bulk Si will be dead at the 28nm, not because of "the money" for manufacturing but because of device physics. FinFET is the only technology in volume manufacturing today at the 22nm by Intel, and the 14nm will be manufactured sometime in 2014. The beauty of FinFET technology is that it can extend to the end of scaling or even to the 1nm node according to FinFET physics. In order to overcome the short channel effect the Fin width, W is equal to the gate length, Lg is required. Or W(Fin width)=Lg(gate length). It means that for the gate length, Lg=3nm, the Fin width W=3nm is only require to overcome the short channel effect. The Fin width, W here is equivalent to the channel thickness for the conventional transistor. Therefore, FinFET will be able to extend to the 3nm node by 2030s beyond the 7nm by 2022. Multiple exposures are used today by Intel for the 22nm FinFET manufacturing. With availability of EUV and 450mm wafers possibly at 14nm, 8nm and 3nm nodes the manufacturing cost per die and per transistor will be significantly reduced. There is no alternative to FinFET today. Moore's Law will be alive to the end of FinFET scaling.  SKim  

<<   <   Page 5 / 5

Most Recent Comments
Most Recent Messages
8:25:34 AM
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Max Maxfield

My Mom the Radio Star
Max Maxfield
Post a comment
I've said it before and I'll say it again -- it's a funny old world when you come to think about it. Last Friday lunchtime, for example, I received an email from Tim Levell, the editor for ...

Bernard Cole

A Book For All Reasons
Bernard Cole
Robert Oshana's recent book "Software Engineering for Embedded Systems (Newnes/Elsevier)," written and edited with Mark Kraeling, is a 'book for all reasons.' At almost 1,200 pages, it ...

latest comment mjlinden Thanks for your input!
Martin Rowe

Leonard Nimoy, We'll Miss you
Martin Rowe
Like many of you, I was saddened to hear the news of Leonard Nimoy's death. His Star Trek character Mr. Spock was an inspiration to many of us who entered technical fields.

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Special Video Section
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.
Recently formed Architects of Modern Power consortium ...
Specially modified Corvette C7 Stingray responds to ex Indy ...
Avago’s ACPL-K30T is the first solid-state driver qualified ...
NXP launches its line of multi-gate, multifunction, ...
EE Times Senior Technical Editor Martin Rowe will interview EMC engineer Kenneth Wyatt.
Flash Poll