Breaking News
Newest First | Oldest First | Threaded View
User Rank
Re: But understanding is still vital
alpa17   4/9/2015 4:07:27 PM
Once you think the schematic is completed,

Additional comments on designing a multi-layer high speed printed circuit board

*Stack up is essential to design up front based on the input requirements especially for high speed designs.
Design decisions on the stack up material and its dielectric constant, the distribution of power planes and digital
planes, ground-power-power-ground method can be utilized to save on the # of layers. If the sensitive and critical high speed digital
signals are not micro-strip routed then they should be routed on layers close to the component with blind vias to reduce via inductance.

*In desigining vias, pre-layout and post-layout via simulations utilizing HFSS Ansys toolkits can be conducted. The results of these
simulations can be utilized to make decisions on whether sequential laminations on the stackup are required.

*Post-layout simulations can be conducted utilizing Allegro editor, momentum and time domain PCIe channel simulators within advanced design systems. The results of these simulations can be utilized to make design decisions related to constraint manager inputs such has maximum trace lengths, the impact of vias, different types of stack up materials, micro strip routing versus stripline routing, impact of nearby traces and vias for stripline routing.

*For high speed designs, the on-board bypass capacitor placement for FPGAs and DDR3 memory integrated chips, the post layout power plane shapes, the resonance peaks and cross overs on the impedance curves can be analyzed by utilizing power integrity simulations within the Cadence sigrity toolkit.

*Constant communication is also required between the hardware design engineer and the pcb designer, especially when requirements change example, modifications are made to the schematic, timing parameters on constraint manager hence needs modification and then the design needs to re-synced.

User Rank
Re: But understanding is still vital
Garcia-Lasheras   11/11/2013 8:58:58 PM
@Adam: In addition to the six point you have described, I would add another one that has driven me nuts more often I would wish to: design for EMC/EMI.

I still remember a product for which I developed the PCB and that was a real pain in the ass. The thing included a MP3 player and a GPS module -- it was a kind of outdoor audioguide. The On-Chip audio output was implemented by using a sigma-delta modulation, and it took me tons of hours to filter the "carrier" higher frequencies and addapt the delivered current before the audio stream EMI stopped shooting down the GPS system.

User Rank
Re: But understanding is still vital
WKetel   11/11/2013 6:43:41 PM
Adam, your several ways are a very good approach, but not so very easy. But then, if it were easy then everybody could do it well. 

User Rank
Re: But understanding is still vital
Adam-Taylor   11/10/2013 8:25:21 AM
You are correct there must be a close relationship between the PCB designer and the designer of the circuit. 

In the past I have acheived this in several ways 

1) Generating the correct net class constraints which can be applid to the types of nets e.g. power, return, 50 Ohm impedance, 100 Ohm impedance. You can define a number of rules for each type then hhow close they can be to each other etc. You can also define the special analogue and digital types for mixed signal boards to ensure correct seperation. 

2) Define differential pairs in the schematic - many tools allow you to put attributes on signas to show they form part of a differential pair.

3) Define signal groups which must have the same electrical length, this is very important for applications like memories, parallel interfaces etc.

4) A formal layout constraints document produced by the schematic designer providing guidance for the PCB layout engineer. This can inlcude things like identification of currents on the power rails, acceptable voltage drops. suggested floor plan of the components and so on. This does not mean the designer and PCB engineer will not need to talk frequently but it does formalise the transfer of information. 

5) Define the PCB stack - and check the track widths and spacing are acceptbale with the PCB vendor to produce the board with a acceptable yield.

User Rank
But understanding is still vital
WKetel   11/9/2013 7:08:33 PM
The "six things" are a quite good summary, and they certainly seem to apply. BUT the really critical thing is for the board designer to be able to understand the signals on every element. Design rules are quite handy, and probably they are the only means for automated checking, but they are not really an adequate substitute for understanding every signal and how it woulod interact with the signals that couple to that trace from adjacent traces. So either the designer needs to have a lot of insight and understanding or the individual who designed the circuit must be able to tag each connection with the characteristics of the signal. Of Course that gets to be huge for a complex board, but the effort may be worth the cost if the system functions perfectly on the very first layout. Not just adequately, but perfectly. Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Most Recent Comments
Most Recent Messages
4:48:30 PM
michigan0 Sang Kim First, 28nm bulk is in volume manufacturing for several years by the major semiconductor companies but not 28nm FDSOI today yet. Why not? Simply because unlike 28nm bulk the LDD(Lightly Doped Drain) to minimize hot carrier generation can't be implemented in 28nm FDSOI. Furthermore, hot carrier reliability becomes worse with scaling, That is the major reason why 28nm FDSOI is not manufacturable today and will not be. Second, how can you suppress the leakage currents from such ultra short 7nm due to the short channel effects? How thin SOI thickness is required to prevent punch-through of un-dopped 7nm FDSOI? Possibly less than 4nm. Depositing such an ultra thin film less then 4nm filum uniformly and reliably over 12" wafers at the manufacturing line is extremely difficult or not even manufacturable. If not manufacturable, the 7nm FDSOI debate is over!Third, what happens when hot carriers are generated near the drain at normal operation of 7nm FDSOI? Electrons go to the positively biased drain with no harm but where the holes to go? The holes can't go to the substrate because of the thin BOX layer. Some holes may become trapped at the BOX layer causing Vt shift. However, the vast majority of holes drift through the the un-dopped SOI channel toward the N+Source,...
Like Us on Facebook
Special Video Section
Once the base layer of a design has been taped out, making ...
In this short video we show an LED light demo to ...
The LTC2380-24 is a versatile 24-bit SAR ADC that combines ...
In this short video we show an LED light demo to ...
Wireless Power enables applications where it is difficult ...
LEDs are being used in current luxury model automotive ...
With design sizes expected to increase by 5X through 2020, ...
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
The LT8602 has two high voltage buck regulators with an ...
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...