Breaking News
Newest First | Oldest First | Threaded View
<<   <   Page 3 / 3
User Rank
How computers used to do binary multiply and divide
KarlS01   12/7/2013 11:11:18 AM
Hi, Tom:  As you said, multiply is a series of additions -- but not dependent on the magnitude of the multiplier, only the number of 1 bits after making both operands positive by complementing if negative.

It is a shift and add sequence starting with the low order bit of the multiplier if it is a 1 add the multiplicand to the double wide product high order and shift right 1 into low order. if multiplier bit is zero, just shift product right one.

Repeat until higher multiplier bits are zero or shifts equal to multipl;ier width. If the high bits are all 0s, then just shift for the remaining word width.

Division was trial subtraction by subtracting the divisore fron the dividend, if the result was positive shift 1 into the quotient high bit else shift 0.  Remainder is left in the reg that held the high order dividend and the quotient in the low order.

If the signs of the dividend and divisor were different, complement at the end.

This is best I remember, maybe a few details missing. The shifts amounted to *2 and /2 and the add/subtract would wind up in the appropriate power of two positions.

I think the constant used in the compiler is 1/10 so they are multiplying by the reciprical of 10 to effectively divide by 10.

User Rank
Re: math links
krisi   12/7/2013 10:01:00 AM
Pretty cool math...I wonder whether they teach something like that in vlsi classes...Kris

User Rank
math links
Brian_D   12/6/2013 7:56:58 PM
There's some nice material about constant division on the companion website for "Hacker's Delight":

Also, VHDL has a nifty fixed point math package:


User Rank
sa_penguin   12/6/2013 7:40:07 PM
Sounds a bit like Goldschmidt division: converting the factor 1/10 into X/(2^n). Multiply by X, shift N bits, done. Taking the upper 16 bits of a 32-bit word is equal to a 16-bit shift.

I suspect 1/10 doesn't translate perfectly to binary so, just like 1/3 becomes 0.33... you get a hex factor of 0x1999... in your division.

<<   <   Page 3 / 3 Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.

Brought to you by:

Most Recent Comments
Max The Magnificent
Kevin Neilson
Max The Magnificent
Max The Magnificent
Like Us on Facebook
Special Video Section
Power can be a gating factor in success or failure of ...
Get to market faster and connect your next product to the ...
See how microQSFP is setting a new standard for tomorrow’s ...
The LTC3649 step-down regulator combines key features of a ...
Once the base layer of a design has been taped out, making ...
In this short video we show an LED light demo to ...
The LTC2380-24 is a versatile 24-bit SAR ADC that combines ...
In this short video we show an LED light demo to ...
Wireless Power enables applications where it is difficult ...
LEDs are being used in current luxury model automotive ...
With design sizes expected to increase by 5X through 2020, ...
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
The LT8602 has two high voltage buck regulators with an ...
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...