Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
optoeng
User Rank
Author
Re: Approach #1
optoeng   12/18/2013 6:17:02 PM
NO RATINGS
These steps are all good, but there are some crucial steps missing, including these, many of which should come BEFORE you consider others:

A. Floor-planning: Position all high dv/dt components and traces as far away from conductors and connectors that lead to the outside world as possible. In some cases, it even matters which side of an X or Y capacitor, for example, is oriented toward the mains connector, common-mode EMI filter, or other mains-connected device.

B. Floor-planning: In addition to minimizing the area of all high di/dt current loops, route conductors of such loops at right angles relative to possible 'victim' circuit loops.

C. Consider how sizeable current loops can exist in large geometry components. For example, TO247 power transistors can have significant loop area in the Source Drain current loop. Large inductors such as PFC chokes often have an 'equivalent turn' around the core if the windings are not designed to neutralize it, etc.

D. Wherever there is large dv/dt, significant currents WILL flow in parasitic capacitances. This includes transformer primary-secondary capacitances and switching element to heatsink capacitances. Nearby shields intended to prevent radiated EMI can actually make things worse if the loops formed by parasitic capacitances to those shields have sufficient area. For these reasons, put shields close to victim circuits but far from high dv/dt nodes, UNLESS you have a means of connecting the shields in such a way that the loops are small.

E. If there is a relatively long path over which parasitic currents can flow, establish a short path, to minimize loop area. The classic example is "switch-heatsink-victim node". Power transistors and rectifiers usually have significant capacitances to their heatsinks, which, in turn, have large areas and high parasitic capacitance to surrounding conductors. In extreme cases, it may be necessary to interpose a shield between the switching element and the heatsink. Short of that, consider a thick insulator, grounding the heatsink, improving efficiency so that a heatsink is unnecessary, etc.

the list goes on... it all comes down to these principals:

* all currents flow in loops, which should be made as small in area as possible

* I = C * dv/dt, so high dv/dt can cause high current, even if capacitance is small, e.g., parasitic

* V = L * di/dt, so high di/dt can cause high voltage, even if inductances, including mutual inductance, are small

 

 

Skipperj
User Rank
Author
Approach #1
Skipperj   12/12/2013 12:36:55 PM
NO RATINGS
Years ago I asked my Uncle Jim (Ham radio expert @ W2UEN),what was the best way to deal with noisy signals.He said the best way is to stop them at their source.But that's not always possible. Thanks for this timely article EETimes! Skip J. in Titusville,Fl.



Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Max Maxfield

March 28 is Arduino Day -- Break Out the Party Hats!
Max Maxfield
6 comments
Well, here's a bit of a conundrum. I just received an email from my chum David Ashton who hails from the "Unfinished Continent" Down Under. David's message was short and sweet; all he said ...

Bernard Cole

A Book For All Reasons
Bernard Cole
1 Comment
Robert Oshana's recent book "Software Engineering for Embedded Systems (Newnes/Elsevier)," written and edited with Mark Kraeling, is a 'book for all reasons.' At almost 1,200 pages, it ...

Martin Rowe

Leonard Nimoy, We'll Miss you
Martin Rowe
5 comments
Like many of you, I was saddened to hear the news of Leonard Nimoy's death. His Star Trek character Mr. Spock was an inspiration to many of us who entered technical fields.

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
16 comments
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Special Video Section
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.
Recently formed Architects of Modern Power consortium ...
Specially modified Corvette C7 Stingray responds to ex Indy ...
Avago’s ACPL-K30T is the first solid-state driver qualified ...
NXP launches its line of multi-gate, multifunction, ...
Radio
LATEST ARCHIVED BROADCAST
EE Times Senior Technical Editor Martin Rowe will interview EMC engineer Kenneth Wyatt.
Flash Poll