Breaking News
Comments
Newest First | Oldest First | Threaded View
Page 1 / 2   >   >>
antedeluvian
User Rank
Author
Planet Analog
antedeluvian   1/17/2014 10:55:02 AM
NO RATINGS
There is a discussion on lead-acid batteries going on on the Planet Analog forum. I will cross post to here.

eetcowie
User Rank
Author
Lead ain't Dead, yet
eetcowie   1/17/2014 10:33:06 AM
NO RATINGS
In keeping up to date, I ran across this piece of industry news from www.powerpulse.net:

To address the impact of Partial State of Charge (PSOC) on cycling batteries in renewable energy (RE), inverter backup and telecom applications, Trojan Battery Co. today announced the addition of Smart Carbon™ as a standard feature to its Industrial and Premium flooded battery lines. Smart Carbon is a proprietary Trojan formula which provides improved performance when the batteries operate in PSOC, enhancing overall battery life in off-grid and unstable grid applications where the batteries are under charged on a regular basis. Along with increased life in a partial state of charge, Trojan's Smart Carbon proprietary formula also provides improved charge acceptance and faster recharge in PSOC applications.
http://www.powerpulse.net/story.php?storyID=29173

I have no affiliation to the news journal or to any battery companies. I just pass along possibly useful info. Some of you have been wondering about additives, so here is yet another.

--enjoy

eetcowie
User Rank
Author
Re: Charging
eetcowie   1/17/2014 9:54:24 AM
NO RATINGS
"...Float-charge voltage per cell: 2.23 (gel), 2.32 (flooded), 2.25(AGM).
At what temperature are those voltages valid?
What is the recommended top charge voltage for gel, flooded, and agm batteries?
I have heard that temperature compensation helps prevent overcharging, particularly when a battery undergoes wide temperature changes while being charged. How much should the charging voltage be adjusted pr. °C for each cell?"

See the text and different tables here: www.powerstream.com/SLA.htm

--enjoy

Bugfighter
User Rank
Author
Charging
Bugfighter   1/17/2014 4:39:32 AM
NO RATINGS
Thanks Ivan,

As you specified, the float charge voltage should be:

Float-charge voltage per cell: 2.23 (gel), 2.32 (flooded), 2.25(AGM).

At what temperature are those voltages valid?

What is the recommended top charge voltage for gel, flooded, and agm batteries?

I have heard that temperature compensation helps prevent overcharging, particularly when a battery undergoes wide temperature changes while being charged. How much should the charging voltage be adjusted pr. °C for each cell?

Sorry for all the questions....

 

 

 

DrFPGA
User Rank
Author
Thanx for the link to the BIC
DrFPGA   1/16/2014 12:36:53 PM
NO RATINGS
will be following their work. Reading over the Grants is particularly enlightening. BIC seems similar to the program the government just launched to drive innovation... Wonder if there is/will be a connection.

eetcowie
User Rank
Author
Re: SLABs
eetcowie   1/15/2014 10:03:57 AM
NO RATINGS
I have found that quite often, batteries can be recovered. Here are some I found:

http://www.youtube.com/watch?v=1xvr3Sc3g2o

http://www.youtube.com/watch?v=Supe1a3LW2U

The best, are with reconditioning the flodded-cell liquid. Some capacity can be done with careful overcharging.

David Ashton
User Rank
Author
Re: SLABs
David Ashton   1/15/2014 12:57:16 AM
NO RATINGS
Thanks Ivan.   Could you also comment on the many designs - both commercial and presented as DIY projects - that claim to recover capacty in used batteries?  As far as I can tell they seem to work by a very short high overcharge, I think to get rid of sulphation, but I may be wrong.  Are any of these worth anything?

eetcowie
User Rank
Author
Re: SLABs
eetcowie   1/14/2014 10:05:01 PM
NO RATINGS
"Can you explain how the technologies for this overcome the gassing that is usual with the wet-cell types?"

looking at the chemical reaction, the GEL is esentially absorbing the Hydrogen, before it can accumulate into a bubble. But in addition, the chemistry/charge-voltage will not produce enough at a rate high enough, unless the cells are overcharged. You will see a warning put out by many manufacturers about popping the valve and explosion hazard, for overcharging due to Hydrogen outgassing.

"And how do the so-called Deep-cycle batteries avoid the sulphation that happens with ordinary batteries if they are deep-discharged?"


Some manufacturers use an additive, that disolves elemental sulfur, keeping it in solution. Others modify the plates to alter the ion density, to slow the movement of the heavier lead-sulfur crystals so it cannot stick. Another clever approach (specialty battery) is a mechanical structure that monitors the specific gravity and adds a buffer from a reservoir, which reverses at full charge. Deep cycle batteries need to be recharged fully, and done soon after the deep discharge is over. Self discharge is the enemy for sulfation. Folks don't realize the trade-offs that deep-cycle causes, such as lower cycle life, lower pulse-current ratings, etc.

eetcowie
User Rank
Author
Re: capacity Mesurement
eetcowie   1/14/2014 9:36:19 PM
NO RATINGS
"Recent Brad Albing blogged about a new TI chip that acts as a gas guage for lead-acid batteries. It looked good to an innocent like myself, and I was wondering if you thought the product had any merit. Looking at it, it does seem to need to apply a load to guage the remaining charge, but so much of the topic is new to me that I would like an expert's opinion."

The chip is very nice. It turns on a MOSFET periodically, to measure the battery terminal voltage. When it does this, it draws a small extra current, which is compared to [their proprietary piece]; doing this allows the internal resistance to be measured (see my previous blog on this). See my other replies on this topic, about the need to do load tests on lead-acid.

eetcowie
User Rank
Author
Re: Lead Acid Batteries
eetcowie   1/14/2014 9:26:42 PM
NO RATINGS
" ...in order to test the battery, I am told you need to drain the battery through a load. The problem is that once this test is done, the battery needs to be recharged- what happens if backup is needed during the charge cycle? Do you concur with this concept that lead-acid batteries be regularily load-tested?..."

Yes, to test it, you must do a load test (but the load you use is your own design). Lead-acid is notorious for looking fine at the very end of its service life; that is, until you need to get some juice from it. It is so important, that alarm systems and uninterruptable power supplies (UPS) will do a load test periodically, to verify that the battery is viable. In many backup systems by APS for example, the load test is substantial, and the unit shuts down the output for a few seconds to complete the test, everytime the unit is plugged into AC power, and everytime the power-on button is pressed. In alarm systems, and some emergency-EXIT signs, the test is scheduled. For these systems, the output is always live, and only done while there is AC power, to have continuous/uninterrupted service. Float charging replenishes the load-test energy. For those systems that are always completely battery powered, the load test is very light, and lasts an extremely short time, so that the battery will not be overly drained. This can be designed to keep power to the load duriing the test, also. Designers will select a battery that is a higher capacity, to just account for the extra energy that load-testing drains during its service life. Once a very specific battery is chosen, its characteristics are well known as it ages. Therefore, it is possible to do a light load for a very short time interval, and know the battery is ok -- especially if the device has a real-time calender to tell you how old the battery is. Some smart batteries include this function.

Page 1 / 2   >   >>


Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...