Design Con 2015
Breaking News
Comments
Newest First | Oldest First | Threaded View
<<   <   Page 4 / 4
alex_m1
User Rank
CEO
Re: compliance
alex_m1   2/7/2014 6:52:15 AM
NO RATINGS
How soon are we going to see it in products ?

nonvolatile
User Rank
CEO
Re: compliance
nonvolatile   2/7/2014 6:40:20 AM
NO RATINGS
Unfortunately this is not true. Compliance simply limits the amount of current and has nothing to do with whether a filament is present or not. If the bulk switches to a conducting state, the current will flow like in a metal. It will increase with the ability of the metal to pass more current. But, once the voltage/current goes to zero, there is no more current. Now, as you re-start from zero upt to the turn-off voltage, the mechanism to turn off the current means that something inside the material is able to stop flow of carriers. That something when there is a filament, would be some kind of filament break or disconnect reaction. What kind of reaction? in these transition metal oxides, the first thing that comes to mind is a change in oxidation number that would create some distortion in the local fields. and, in many cases, this is what happens to filaments near the anode. The anode can source electrons or holes, but mostly there will be a deficit of electrons a few lattice constants under the anode, just enough to break a filament. In our case, this random breaking of filaments by an electrochemical reaction is taken out of the equation by providing a highly conductive doped layr of NiO. Then, in a very thin middle layer, only about20 atoms thick, the active switching region is built. Enough analysis with XPS etc. has shown that this switched region is uniform and has different dominance of oxidation numbers of the right kind (+1,+3,+2) and none of the filament kind in the conductive state or otherwise(+0, metallic NiO). So, not only there is physical evidence from the spectroscopic data, but also from the electrical data, as hole injection from the anode controls the shut-off, Now, the step of making it conductive, with the compliance, is proportional to this hole current that appears going from zero volts to Vreset (turn off voltage). Experiments can be designed to literaly control how many electrons you want to come in at the seting voltage, and how many holes to come in to turn it off. That is, you must "erase" the amount of excess electrons that created the conductive state with incoming holes. This can be very precise and vary with doping levels to the point that the maximum "ON" current in the ohmic side of the IV curve, at a maximum, will be exactly the value of the compliance current. None of this could happen with any kind of filament through the perfectly metallic constituint Ni(0+).  And, if the buffer layer, which is conductive, was made up of filaments, it would extinguish holes right away and never get to the thin middle layer of 20 atoms thick. And, if the thin layer would be of filaments, it would never be under the metal/insulator interface near the anode to have a disconnect reaction. This and many other considerations of what kind of potential energy landscape the Ni ion sees with or without doping, make it almost indisputable the filament argument in CeRAM.

 

resistion
User Rank
CEO
Re: compliance
resistion   2/7/2014 6:18:07 AM
NO RATINGS
The key is without compliance what happens.

Ron Neale
User Rank
Blogger
Re: compliance
Ron Neale   2/7/2014 5:51:39 AM
NO RATINGS
Resistion: I think the validity of your point, filament versus bulk switching, would rest with you providing our readers with an explanation of the mechanism that allows the formation of  an insulating filament in a material that it is claimed is highly conducting in its as-born state. If you consider a planar parallel electrode structure once your insulating filament is formed why would the material surrounding your filament that is still in its conducting state and subjected to the same applied voltage not switch to the insulating state? The claimed lack of a need for forming is a key point. 

resistion
User Rank
CEO
NiO RRAM
resistion   2/7/2014 12:33:35 AM
NO RATINGS
NiO RRAM also has been demonstrated many times. This looks like a doped formulation.

resistion
User Rank
CEO
compliance
resistion   2/7/2014 12:15:09 AM
NO RATINGS
If it needs compliance, it's filamentary, I'm afraid.

krisi
User Rank
CEO
Re: congrats
krisi   2/6/2014 4:45:19 PM
thank you Carlos, will do...if anyone else is interested pls drop me an email, we will be orgazining in Vancouver in 2015 with Santosh Kurinec a session on emerging memories...BTW, our book on this topic is out: http://www.amazon.ca/Nanoscale-Semiconductor-Memories-Technology-Applications/dp/1466560606...conference link is www.cmosetr.com, Kris

nonvolatile
User Rank
CEO
Re: congrats
nonvolatile   2/6/2014 4:36:47 PM
NO RATINGS
Yes - send me an email. I was a little busy last time. Thanks for your unending support.

krisi
User Rank
CEO
congrats
krisi   2/6/2014 4:03:36 PM
NO RATINGS
Congrats Carlos, you did it again...would you be interested in presenting this at emerging technologies symposium in Vancouver in 2015? preliminary program at www.cmosetr.com, cheers, Kris (kris.iniewski@gmail.com)

<<   <   Page 4 / 4


Top Comments of the Week
Flash Poll
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
Max Maxfield

Recommended Reads From the Engineer's Bookshelf
Max Maxfield
1 Comment
I'm not sure if I read more than most folks or not, but I do I know that I spend quite a lot of time reading. I hate to be idle, so I always have a book or two somewhere about my person -- ...

Aubrey Kagan

Have You Ever Been Blindsided by Your Own Design?
Aubrey Kagan
37 comments
I recently read GCHQ: The uncensored story of Britain's most sensitive intelligence agency by Richard J. Aldrich. The Government Communication Headquarters (GCHQ), Britain's equivalent of ...

Martin Rowe

No 2014 Punkin Chunkin, What Will You Do?
Martin Rowe
2 comments
American Thanksgiving is next week, and while some people watch (American) football all day, the real competition on TV has become Punkin Chunkin. But there will be no Punkin Chunkin on TV ...

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
15 comments
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Special Video Section
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.
Recently formed Architects of Modern Power consortium ...
Specially modified Corvette C7 Stingray responds to ex Indy ...
Avago’s ACPL-K30T is the first solid-state driver qualified ...
NXP launches its line of multi-gate, multifunction, ...
Doug Bailey, VP of marketing at Power Integrations, gives a ...
See how to ease software bring-up with DesignWare IP ...
DesignWare IP Prototyping Kits enable fast software ...
This video explores the LT3086, a new member of our LDO+ ...
In today’s modern electronic systems, the need for power ...