Breaking News
Comments
Newest First | Oldest First | Threaded View
<<   <   Page 2 / 4   >   >>
Ron Neale
User Rank
Author
Re: Current density
Ron Neale   2/10/2014 10:03:00 AM
NO RATINGS
I think CeRAM array fabrication and evaluation is the next step as indicated below.  However, if you are suggesting that in a general sense there is some fundamental limit to array size related to read current, or read current density, or you have some formula that links and limits those variables then please share it with us.

For any of the emerging memory technologies looking to achieve large array bit densities, mimnimizing power requires finding the lowest possible write,erase,read current. In many cases the solution will be in array architecture, layout and sense amplifier design.

eebert
User Rank
Author
Current density
eebert   2/10/2014 9:06:45 AM
NO RATINGS
hello, maybe I miss something but the current densities are very low from the I/V curves shown by the writer, how do you expect to have fast random access times froma memory array with such low currents? thanks

nonvolatile
User Rank
Author
Re: compliance
nonvolatile   2/7/2014 11:19:52 AM
NO RATINGS
ok-soon

resistion
User Rank
Author
Re: compliance
resistion   2/7/2014 11:02:30 AM
NO RATINGS
Hope to see some array demos if you can get to publish those results..

nonvolatile
User Rank
Author
Re: compliance
nonvolatile   2/7/2014 10:31:26 AM
NO RATINGS
I hope so. Maybe sooner.

alex_m1
User Rank
Author
Re: compliance
alex_m1   2/7/2014 10:15:16 AM
NO RATINGS
Since you're fab compatible, in 2 years we'll see memories or also SOC's/microcontrollers intergarting CeRAM ?

nonvolatile
User Rank
Author
Re: forming
nonvolatile   2/7/2014 9:02:47 AM
NO RATINGS
Right on. It is not an easy task to discriminate what is the dominant phase transition mechanism in the reative region of where the filament is. The Schottky barrier is a space charge region which is not ever a constant potential area - in fact it goes from a high field to the zero field point wher the space charge is fully compensated by the bulk charge, In fact all semiconductor devices dependend on pn,Schottky and MOs space charge regions - all call this the 5 Schikley equations and 3 regions devices. The field distribution and the cyrstal field plus defects are a deadly mix for a stable memory device. And, since there is no hysterectic behavior intrnisic to semiconductors, we have to live with oxides and the like to make nonvolatile memories (where hysteresis is a must). Now in FLASH you have charge trapping in the floating gate causing threshold voltage hysteresis. We know that that is not a great solution in terms of endurance and power. Now, shemes  as you describe that technically end up in charge trapping are not of potentially great future either, as eventually reliability lomits in controlling the traps squeeze you in. So, when we saw the universality of CeRAM being a quantum phenomenon that is not dependent in single crystals and right off the bat it shows easy integration and fulfills a cost/performance market node, you can imagine our excitement. But to tell you the truth, the academic side of me, specially in device physics, is what really turn me on. 

resistion
User Rank
Author
Re: forming
resistion   2/7/2014 8:49:54 AM
NO RATINGS
Yes, I agree a filamentary forming-free device is still filamentary. Recently, there have been pictures of filamentary structures (mostly TaOx-based) and unexpectedly there wasn't a single dominant one, but it looked like many at the interface. Sometimes it is reported the filament is like a metal, sometimes like a semiconductor. I sometimes wonder if the filament is going through the metal-insulator transition. And with many filaments occurring, where to draw the line separating from area-based...even Schottky and STT can be non-uniform.

resistion
User Rank
Author
Re: forming-free
resistion   2/7/2014 8:41:47 AM
NO RATINGS
There have been many examples of forming-free resistive memories. In the ideal case, the RESET state is virtually the same as the initial. But I haven't surveyed this extensively in a while, so I can't comment how common this is.

nonvolatile
User Rank
Author
Re: forming
nonvolatile   2/7/2014 8:34:47 AM
NO RATINGS
I think that you meant Vset, as in these cases, the forming voltage is of the same order as the set voltage. These arguments of "No forming needed" have entered the arena recently, specially in HfO. But, they do not mean that no filaments are made. And, again, it is a matter of reliability. How reliable is the "disconnect" region of these filaments. Can one really bank on random electrochemical reactions for a memory. Some will say that certain tailoring of the filament map etc. can eventually make a good memory device. I heard a lot about this kind of argument when we were in the Phase Change Memory area. I do not believe that strucutral thermally driven phase transitions are an answer to 10 nm devices and beyond. We have to have something better - something truly quantum and not metallurgical.

<<   <   Page 2 / 4   >   >>


Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...