Embedded Systems Conference
Breaking News
Newest First | Oldest First | Threaded View
User Rank
Re: Interesting, But Not Quite
Garcia-Lasheras   2/19/2014 5:38:02 PM
@HankWalker: I'm glad to hear some comments from an old-school Caltech student. Today, this institution continues the leading research in asynchronous logic with people such as Alain Martin -- I know he is not a youngster, but still kicking ;-)

About your comments, I totally agree with your explanation about throughput. In addition to the classic laundry example, that explains the case for a straight-forward pipeline, we should consider that micropipes can be used in more complex designs including fork and funnel structures. e.g. if they are applied to a pipelined processor in which the ALU includes different ops, each one with different processing times, the throughput has the potential of being higher than the synchronous counterpart depending on the instructions distribution and order.

In addition, when applying delay insensitive or quasi-delay insensitive approaches to designing micropipes, we can actually reach higher throughputs as we don't need to make any worst-case timing assumption based on process/temperature/voltage variations: they just run as fast as they can -- of course, we could theoretically run a faster synchronous pipe when full data load, but in practice we would face very important clock issues when calculating the optimal period.

About GALS, by following the included link, you'll find a previous blog covering the clocking issues that lead to this compromise solution (synchronous islands plus asynchronous network-on-chip communications).

Finally, about the elastic/inelastic classification, I've directly taken it from Ivan's ACM Turing's Award lecture -- the blog includes the link to this precious gem too. Quoting him:

"Some pipelines are inelastic; the amount of data in them is fixed. The input rate and the output rate of an inelastic pipeline must match exactly. Stripped of any processing logic, an inelastic pipeline acts like a shift register. Other pipelines are elastic; the amount of data in them may vary. The input rate and the output rate of an elastic pipeline may differ momentarily because of internal buffering."


User Rank
Interesting, But Not Quite
HankWalker   2/19/2014 12:59:46 PM
Ivan was starting to cover this material when I was an undergrad at Caltech in the late 1970s. The micropipeline throughput is still limited to the same speed as the synchronous pipe, since they are both limited by the slowest stage. Consider a washer and dryer. You can pile up wet laundry on top of the dryer (micropipe), but it will still have to wait for the dryer. What the micropipe does provide is elastic buffering if the pipe input load is bursty, achieving higher throughput since the pipe source will not have to stall.

You have not discussed micropipe disadvantages. The loopback time of request/ack signaling adds a stage delay overhead that is not present in a synchronous clock design, so the synch pipe can potentially have a shorter cycle time. But this must be balanced against the effort (power/area) required to distribute a synch clock. This is why GALS is proposed - a synch clock is better over small regions and asynch over larger regions.

I think "elastic FIFO" is a redundant term. A FIFO that is not elastic is pointless.


In conjunction with unveiling of EE Times’ Silicon 60 list, journalist & Silicon 60 researcher Peter Clarke hosts a conversation on startups in the electronics industry. One of Silicon Valley's great contributions to the world has been the demonstration of how the application of entrepreneurship and venture capital to electronics and semiconductor hardware can create wealth with developments in semiconductors, displays, design automation, MEMS and across the breadth of hardware developments. But in recent years concerns have been raised that traditional venture capital has turned its back on hardware-related startups in favor of software and Internet applications and services. Panelists from incubators join Peter Clarke in debate.
Most Recent Comments
Flash Poll
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Special Video Section
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.