Breaking News
Comments
Newest First | Oldest First | Threaded View
<<   <   Page 3 / 3
junko.yoshida
User Rank
Author
radio head
junko.yoshida   2/19/2014 7:05:22 PM
NO RATINGS
Thank God, finally here's a story that adds technical insights in Artemis! Thank you, Rick.

The hard part appears to be NOT the radio head, but operators' willingness to embrace the technolgoy to get ready with the backend for deployment.

Bert22306
User Rank
Author
No turning Shannon on its head
Bert22306   2/19/2014 6:58:34 PM
NO RATINGS
Rick, what the paper describes is otherwise known as MIMO. Each AP transmits a signal on the same frequency channel. As long as the receivers can decorrelate the propagation paths from the different APs, they can reconstruct the desired signal.

In traditional MIMO, each transmitter sends multiple beams in different directions, and each receiver would combine the bit streams from all of the propagation paths. In this DIDO, it looks like each receiver is only interested in one of the propagation paths, rather than aggregating the signals from all of the paths. The net effect is the same, though.

These are clever techniques that APPEAR to violate Shannon's limit, but in fact they don't. They depend on decorrelated propagation paths, much as you would have if you used multiple separate cables in parallel. If the signals paths become more correlated, you will lose that spectral efficiency. For example, bring the APs physically very close together compared with the distance to the receivers. That sort of thing makes it difficult to decorrelate the different propagation paths.

<<   <   Page 3 / 3


Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
The quality and reliability of Mill-Max's two-piece ...
01:34
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...