Breaking News
Comments
Newest First | Oldest First | Threaded View
Kinnar
User Rank
Author
Re: Carver Mead's Analog Roadmap
Kinnar   4/24/2014 2:19:09 PM
NO RATINGS
That's really sounds great, actually this technological development is called mixed mode designs terminologically, mixed mode controllers are very much in use in microcontroller based designs, this may help in this subject area as well.

R_Colin_Johnson
User Rank
Author
Re: Carver Mead's Analog Roadmap
R_Colin_Johnson   4/22/2014 2:41:06 PM
NO RATINGS
Yes, you are right. In fact. Hasler's FPAA's are not all analog, but are chocked full of digital circuitry too for control, calibration and the like.

Kinnar
User Rank
Author
Re: Carver Mead's Analog Roadmap
Kinnar   4/22/2014 2:27:06 PM
NO RATINGS
Analog emulations will be able to function as neurons but it needs to be correctly morphed and second thing is the susceptible of analog devices with temperature and its nonlinearity to handle it and control it again digital domain will be required.

R_Colin_Johnson
User Rank
Author
Re: Carver Mead's Analog Roadmap
R_Colin_Johnson   4/22/2014 2:13:27 PM
NO RATINGS
Yes, the interconnection problem is huge even for real brains, which is why the white matter--which carries signals between brain regions--is actually the bulk of the deep parts of the brain.

R_Colin_Johnson
User Rank
Author
Re: Carver Mead's Analog Roadmap
R_Colin_Johnson   4/22/2014 2:02:52 PM
NO RATINGS
I think one of Carver Mead's often overlooked insights was that many analog functions can be emulated by building similar structures in silicon--such as his famous silicon cochlea which spawned the field of neuromorphic engineering. Yes, you can simulate its function with an algorithmic digital solutions, but only if you truly understand all the dynamics. Whereas an analog emulation might exhibit dynamics that are not well understood, but which nevertheless operate similarly to the way the real biological systems operate. 

AZskibum
User Rank
Author
Re: Carver Mead's Analog Roadmap
AZskibum   4/22/2014 11:05:14 AM
NO RATINGS
A single transistor synapse is a huge and probably necessary step, but the monumental interconnect problem seems almost insurmountable. But there should be little doubt that an analog approach will be a lower power solution than a digital one.

DrFPGA
User Rank
Author
Error Correction?
DrFPGA   4/22/2014 10:36:38 AM
NO RATINGS
At very small geometries I wonder if error correction is needed to protect small analog signals from errors due to radiation... The need for error correction might require duplication of 'logic' and other inefficiencies...

LarryM99
User Rank
Author
Re: Carver Mead's Analog Roadmap
LarryM99   4/21/2014 6:53:50 PM
NO RATINGS
Digital simulation of sufficient range should be able to be indistinguishable from analog. Step functions with small enough steps (note the lack of rigorous definition here) should be able to emulate continuous functions.

Oddly enough, it seems like digital simulation of sufficient resolution actually map into reality the same way that analog does. Drop that analog circuitry to the quantum level and it starts looking very digital. The difference is that digital simulation bits maintains state rather than going to the statistical weirdness of the quantum world. My biggest concern is that there may be real differences as a result.

R_Colin_Johnson
User Rank
Author
Carver Mead's Analog Roadmap
R_Colin_Johnson   4/21/2014 5:46:09 PM
NO RATINGS
I have been writing about artificial neural networks and neuromorphic systems since the 1990s when Carver Mead invented the artificial retina based on the human eye. Mead emphasized the need to use analog not only to save power, but to truly emulate the continuous analog functions of the human nervous system rather than just simulate them with step-time digital functions. This roadmap empasizes the same need for analog functions in neuromorphic systems. What's your opinion on analog emulation versus digital simulations?



Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Radio
NEXT UPCOMING BROADCAST

What are the engineering and design challenges in creating successful IoT devices? These devices are usually small, resource-constrained electronics designed to sense, collect, send, and/or interpret data. Some of the devices need to be smart enough to act upon data in real time, 24/7. Are the design challenges the same as with embedded systems, but with a little developer- and IT-skills added in? What do engineers need to know? Rick Merritt talks with two experts about the tools and best options for designing IoT devices in 2016. Specifically the guests will discuss sensors, security, and lessons from IoT deployments.
Like Us on Facebook
Special Video Section
Linear Technology’s LT8330 and LT8331, two Low Quiescent ...
The quality and reliability of Mill-Max's two-piece ...
01:34
The quality and reliability of Mill-Max's two-piece ...
LED lighting is an important feature in today’s and future ...
05:27
The LT8602 has two high voltage buck regulators with an ...
05:18
Silego Technology’s highly versatile Mixed-signal GreenPAK ...
The quality and reliability of Mill-Max's two-piece ...
01:34
Why the multicopter? It has every thing in it. 58 of ...
Security is important in all parts of the IoT chain, ...
Infineon explains their philosophy and why the multicopter ...
The LTC4282 Hot SwapTM controller allows a board to be ...
This video highlights the Zynq® UltraScale+™ MPSoC, and sho...
Homeowners may soon be able to store the energy generated ...
The LTC®6363 is a low power, low noise, fully differential ...
See the Virtex® UltraScale+™ FPGA with 32.75G backplane ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...