Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
Max The Magnificent
User Rank
Author
Re: Half speed
Max The Magnificent   5/29/2014 9:43:46 AM
NO RATINGS
@zeeglen: Once - and only once - I proposed similar.  The software people were like to have me strung up, drawn, and quartered for even THINKING such a heretical notion.

I recall a computer in the UK -- you could purchase one with a certain amount of computing power for a certain price -- when your company needed more computing power, you could pay for an upgrade.

The technician would come round and pull out your mother board and plug in a new "super duper" motherboard with "twice the computing power" -- once back in his van, he would take your old board and swap the jumper from 1X clock to 2X clock, then that was the "new" board he would take into the next company...

zeeglen
User Rank
Author
Half speed
zeeglen   5/29/2014 9:23:26 AM
NO RATINGS
From the article: Running the CPU at half the clock speed, for example, can halve its power consumption.

Once - and only once - I proposed similar.  The software people were like to have me strung up, drawn, and quartered for even THINKING such a heretical notion.

Seriously, this a very informative series of articles, came here from Part 3, don't know how I missed Parts 1 and 2 the first time around.

cuong@edadirect.com
User Rank
Author
Monitoring after the board is done is good but does the board have enough copper in the first place?
cuong@edadirect.com   4/25/2014 10:43:01 PM
NO RATINGS
This is a great post that should bring awareness to the board designers.  I'd like to supplement the article content by proposing that simulations of the PDN (Power Distribution Network) be done prior to board fab (and during layout) to ensure that there's enough copper in the plane (or thick traces) that need to accomodate high current switching activities.  In today's board design (specifically in the pwr/gnd plane structures) the designer needs to be aware that the pwr/gnd planes can be fragmented due to pin breakouts, via structures, narrow areas, etc...  As such, the full current-carrying effects of the planes cannot be realized.  There could be narrow areas (or neck-down) sections of the plane that must carry the required currents from the regulator to the destination devices.  These types of areas are the bottlenecks in the plane structures and can cause significant (and dynamic) voltage drops when there are high current switching activities from the device power pins connecting to the rail (or GND return paths).  The current will take the path of least resistance (ie. shortest path) to/from the voltage regulator so if these areas are not analyzed correctly there can be areas of high concentration of current density (mA/mil square) that potentially can heat up the traces causing breakdowns over time.  The idea is to have sufficient copper pours to minimize the DC drop (or loss) voltage.  The best way to fix the problem is to avoid it in the first place before the board is fabbed and components are stuffed.  The bench used to be my favorite place to spend time but nowadays I spend more time in simulations than sitting on the bench measuring things.  Simulations can identify issues before the board is fabbed...  Now where would you rather spend time (and money)?



Radio
NEXT UPCOMING BROADCAST
In conjunction with unveiling of EE Times’ Silicon 60 list, journalist & Silicon 60 researcher Peter Clarke hosts a conversation on startups in the electronics industry. One of Silicon Valley's great contributions to the world has been the demonstration of how the application of entrepreneurship and venture capital to electronics and semiconductor hardware can create wealth with developments in semiconductors, displays, design automation, MEMS and across the breadth of hardware developments. But in recent years concerns have been raised that traditional venture capital has turned its back on hardware-related startups in favor of software and Internet applications and services. Panelists from incubators join Peter Clarke in debate.
Flash Poll
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Special Video Section
The LT®3042 is a high performance low dropout linear ...
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...