Embedded Systems Conference
Breaking News
Comments
Oldest First | Newest First | Threaded View
Page 1 / 2   >   >>
vlsi_guy
User Rank
Author
That would be ideal for power gating switches...
vlsi_guy   5/7/2014 11:21:52 AM
NO RATINGS
Assuming idrive is good, leakage is comparable or better, and low source/drain resistance we could have these power gating (e.g., header switches) up near the top of the BEOL. Rather then now, where we have to go all the way down to FEOL then post switch route back up to upper layers just to distribute current back down to functional devices.

Sign me up :-)

 

R_Colin_Johnson
User Rank
Author
Re: That would be ideal for power gating switches...
R_Colin_Johnson   5/7/2014 11:34:42 AM
NO RATINGS
Of course, stacking memory is the most obvious application, but I'm sure that when designers put on their thinking cap they'll find many more useful applications of having active devices within the metalization layers--just like you did.

DrFPGA
User Rank
Author
FPGA Configuration
DrFPGA   5/7/2014 11:41:01 AM
NO RATINGS
The devices used to configure FPGAs can be slow- they just need to be on or off. Perhaps switches for signal routing right at the wire intersection would be a nice application for this technique...

jeremybirch
User Rank
Author
Re: FPGA Configuration
jeremybirch   5/7/2014 12:42:21 PM
NO RATINGS
The picture has a scale on it - the transistor is best part of a millimetre across with a gatelength of perhaps 50-100um - that is not going to be particularly fast.


What are the possibilities for scaling to somewhere nearer the underlying CMOS sizes?

R_Colin_Johnson
User Rank
Author
Re: FPGA Configuration
R_Colin_Johnson   5/7/2014 2:08:21 PM
NO RATINGS
This was just an early test, but they have plans to get down intro the sub-micron range using nanoimprint technology.

R_Colin_Johnson
User Rank
Author
Re: That would be ideal for power gating switches...
R_Colin_Johnson   5/7/2014 3:57:59 PM
NO RATINGS
Another great application, and I'm sure there are many more. Of course, SRC members will receive access to these research results via a non-exclusive royalty free license as part of their SRC membership, but others interested in using it can go through the university.

R_Colin_Johnson
User Rank
Author
Rights and Permissions
R_Colin_Johnson   5/7/2014 4:00:29 PM
NO RATINGS
SRC members will receive access to these research results via a non-exclusive royalty free license as part of their SRC membership, but others interested in using it can go through the university. (I know this is a dupe of what I appended to "Re: That would be ideal for power gating switches...", but thought it should be said separately too.)

GMF
User Rank
Author
Re: That would be ideal for power gating switches...
GMF   5/7/2014 5:50:00 PM
NO RATINGS
MAybe more cost atractive by depositing these materials through standard CMOS process. At least the transister size could be much smaller.

Astronut0
User Rank
Author
That's a big transistor...
Astronut0   5/8/2014 4:55:55 PM
NO RATINGS
Nice proof of concept, but that's one BIG, SLOW transistor!  It will be interesting to see whether smaller, faster transistors can be built by the same method.
Question: if they're built in layers, won't planarity become an issue?

R_Colin_Johnson
User Rank
Author
Re: That's a big transistor...
R_Colin_Johnson   5/8/2014 7:22:10 PM
NO RATINGS
Astronut0 said: Nice proof of concept, but that's one BIG, SLOW transistor! It will be interesting to see whether smaller, faster transistors can be built by the same method. Question: if they're built in layers, won't planarity become an issue? -- I didn't know the answers so I asked the authors. Here's what they said: RE: smaller transistors: Yes, smaller transistors can be made. Bandgap is large, so that helps with leakage, but @ high fields there is enhanced leakage through grain boundary generation. Mobility is what it is, however, without associated improvements in material. Mobility will still be lower than Si... the best mobility numbers reports for these materials are <100cm2/V-s, but, on the other hand, achievable carrier concentrations can be higher due to available states. RE: planarity: Planarization would be CMP if integrated within the other metal levels, or possibly SOG if integrated on top of the BEOL metallization.

Page 1 / 2   >   >>


Radio
LATEST ARCHIVED BROADCAST
As data rates begin to move beyond 25 Gbps channels, new problems arise. Getting to 50 Gbps channels might not be possible with the traditional NRZ (2-level) signaling. PAM4 lets data rates double with only a small increase in channel bandwidth by sending two bits per symbol. But, it brings new measurement and analysis problems. Signal integrity sage Ransom Stephens will explain how PAM4 differs from NRZ and what to expect in design, measurement, and signal analysis.

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Like Us on Facebook
Special Video Section
The LTC®6363 is a low power, low noise, fully differential ...
Vincent Ching, applications engineer at Avago Technologies, ...
The LT®6375 is a unity-gain difference amplifier which ...
The LTC®4015 is a complete synchronous buck controller/ ...
10:35
The LTC®2983 measures a wide variety of temperature sensors ...
The LTC®3886 is a dual PolyPhase DC/DC synchronous ...
The LTC®2348-18 is an 18-bit, low noise 8-channel ...
The LT®3042 is a high performance low dropout linear ...
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LT®3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in today’s and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptop’s 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...