Embedded Systems Conference
Breaking News
Comments
Newest First | Oldest First | Threaded View
R_Colin_Johnson
User Rank
Author
Re: Graphene band gap?
R_Colin_Johnson   5/13/2014 11:52:18 AM
NO RATINGS
Bandgaps make semiconductors work--they are the energy region where no electron can exist--measured by the electron-volts needed to make an electron jump from the valence band (where they are trapped by the nucleus) to the conduction band where they are free to conduct electricity. An insulator has a very wide bandgap that under normal operating conditions is never jumped. Conductor has no bandgap (or a miniscule one) so that electricity is free to move in them for even the tiniest voltage offset. Semiconductors have various sized bandgaps which give them their abilities, such as to turn on and off a transistor, or in optical materials to emit photons to shed the energy required to make an electron fall back after jumping its bandgap. Since graphene has no bandgap, it is a semi-metal conductor with extremely high electron mobility due to its extremely uniform honeycomb structure that effectively makes electrons lose their mass. But to make it into a semiconductor you need to either add defects, use passivation, doping, nanoscale perforations, make "ragged" edges, use more than one layer slightly offset from each other, or even expose graphene to humidity.

 

ghfarmer
User Rank
Author
Graphene band gap?
ghfarmer   5/13/2014 11:20:32 AM
NO RATINGS
Forgive me for being naiive, but I thought one of the great strengths of graphene was its native zero bandgap condition.  I've seen numerous articles discussing the strengths of graphene as a material that can be processed into both P and N junctions in the same piece of substrate.  It sounds like this research is trying to optimize substrates for a single type of junction.   Am I misunderstanding the issue here?



Radio
NEXT UPCOMING BROADCAST
In conjunction with unveiling of EE Timesí Silicon 60 list, journalist & Silicon 60 researcher Peter Clarke hosts a conversation on startups in the electronics industry. One of Silicon Valley's great contributions to the world has been the demonstration of how the application of entrepreneurship and venture capital to electronics and semiconductor hardware can create wealth with developments in semiconductors, displays, design automation, MEMS and across the breadth of hardware developments. But in recent years concerns have been raised that traditional venture capital has turned its back on hardware-related startups in favor of software and Internet applications and services. Panelists from incubators join Peter Clarke in debate.
Flash Poll
Top Comments of the Week
Like Us on Facebook

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Special Video Section
The LTģ3042 is a high performance low dropout linear ...
Chwan-Jye Foo (C.J Foo), product marketing manager for ...
The LTģ3752/LT3752-1 are current mode PWM controllers ...
LED lighting is an important feature in todayís and future ...
Active balancing of series connected battery stacks exists ...
After a four-year absence, Infineon returns to Mobile World ...
A laptopís 65-watt adapter can be made 6 times smaller and ...
An industry network should have device and data security at ...
The LTC2975 is a four-channel PMBus Power System Manager ...
In this video, a new high speed CMOS output comparator ...
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
10:29
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...