Design Con 2015
Breaking News
Newest First | Oldest First | Threaded View
<<   <   Page 3 / 3
User Rank
Re: Why not 22nm?
OtisTD   5/20/2014 1:13:27 PM
Intel used double patterning at 22nm.


It would depend on the design, but 28nm FDSOI should be pretty comparable to 22nm bulk planar (maybe even better?) from a power vs. performance standpoint.  Die size will be bigger, which normally means higher cost, but in this case that isn't so clear.  Based on the releases so far the argument in favor of the 28nm FDSOI is that for medium-low TAM products 28nm cost is a sweet spot, there is minimal re-design/re-optimization cost to go to FDSOI, so that offsets the additional substrate cost.  The process flow might be a little simpler with FDSOI than with 28nm bulk planar and certainly simpler than 22nm, further offsetting the cost.  I haven't seen any indication yet that they will introduce additional body biasing techniques for this 28nm node, but they could and that would further reduce power for some products.  Keep in mind Intel has high TAM products that require very high performance- FinFET/TriGate has an advantage there.


rick merritt
User Rank
Re: Why not 22nm?
rick merritt   5/19/2014 9:03:49 PM
@Gondalf: An interesting alternate take on the news.

User Rank
Re: Why not 22nm?
AKH0   5/19/2014 4:31:42 PM
In principle it is possible, but it comes at the expense of less design flexibility. The gate and metal pitch at 28nm allows bidirectional poly and metal, whereas Intel's 22nm is unidirectional. A bidirectional M1 is almost equal to 2 layers of unidirectional metal for most designs.

User Rank
Re: Why not 22nm?
AKH0   5/19/2014 4:27:44 PM
Did Intel fabricate either bulk 22nm to proove FinFET was only 2-3% cost addrer? Did they run FDSOI to see it is 10% cost addrer? No, it was all powerpoint. Same as the famous chart that claimed 37% performance advantage coming from FinFET with no silicon data to back it up -- yes, they actually showed ring ocsilator data at VLSI to support that claim, but I am sure they wish they didn't.

User Rank
Re: Why not 22nm?
Gondalf   5/19/2014 4:17:33 PM
Strange enough Intel (and TSMC) are thinking the opposite about FD-Soi.

On Intel 22nm the FinFet adoption only charge 2-3% of more costs, FD-Soi was not utilized because means a strong 10% charge over bulk.

The real story is that Samsung has not a good experience in processes for CPUs, GPUs or SOCs. Samsung has never developed something of exciting in this segment, it's processes for SOCs are licensed from Common Plataform (IBM mainly). in this moment Samsung is in crisis because IBM is out of the game and GloFo has not money to develop anything.

The more easy street to gain a bit of power reduction is to license (again) a process from another Company out of Common Plataform...

Samsung is late on 20nm bulk and likely is VERY late in FinFet, so an expensive FD-Soi could be an interim solution for it's SOCs. Too bad Samsung is losing the shrink and this will rise the costs even more. Too bad "money" is not enough to gain proof in silicon science, it needs "men" and their experience, Samsung has not them.

I can see only two companies able to gain a lot of momentum in silicon industry in the near future: Intel and TSMC.... all others have not the experience to face the upcoming very difficoult silicon nodes.

User Rank
Why not 22nm?
alex_m1   5/19/2014 10:07:32 AM
Are there efforts to go down to single patterning 22nm like intel, and if not why ? And how does 28nm fd-soi compares to 22nm with regards to power consumption ?

<<   <   Page 3 / 3

Top Comments of the Week
Flash Poll
Like Us on Facebook Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
EE Life
Frankenstein's Fix, Teardowns, Sideshows, Design Contests, Reader Content & More
<b><a href=Betajet">

The Circle – The Future's Imperfect in the Present Tense
The Circle, a satirical, dystopian novel published in 2013 by San Francisco-based writer Dave Eggers, is about a large, very powerful technology company that combines aspects of Google, ...

Max Maxfield

Recommended Reads From the Engineer's Bookshelf
Max Maxfield
I'm not sure if I read more than most folks or not, but I do I know that I spend quite a lot of time reading. I hate to be idle, so I always have a book or two somewhere about my person -- ...

Martin Rowe

Make This Engineering Museum a Reality
Martin Rowe
Post a comment
Vincent Valentine is a man on a mission. He wants to make the first house to ever have a telephone into a telephone museum. Without help, it may not happen.

Rich Quinnell

Making the Grade in Industrial Design
Rich Quinnell
As every developer knows, there are the paper specifications for a product design, and then there are the real requirements. The paper specs are dry, bland, and rigidly numeric, making ...

Special Video Section
The LT8640 is a 42V, 5A synchronous step-down regulator ...
The LTC2000 high-speed DAC has low noise and excellent ...
How do you protect the load and ensure output continues to ...
General-purpose DACs have applications in instrumentation, ...
Linear Technology demonstrates its latest measurement ...
Demos from Maxim Integrated at Electronica 2014 show ...
Bosch CEO Stefan Finkbeiner shows off latest combo and ...
STMicroelectronics demoed this simple gesture control ...
Keysight shows you what signals lurk in real-time at 510MHz ...
TE Connectivity's clear-plastic, full-size model car shows ...
Why culture makes Linear Tech a winner.
Recently formed Architects of Modern Power consortium ...
Specially modified Corvette C7 Stingray responds to ex Indy ...
Avago’s ACPL-K30T is the first solid-state driver qualified ...
NXP launches its line of multi-gate, multifunction, ...
Doug Bailey, VP of marketing at Power Integrations, gives a ...
See how to ease software bring-up with DesignWare IP ...
DesignWare IP Prototyping Kits enable fast software ...
This video explores the LT3086, a new member of our LDO+ ...
In today’s modern electronic systems, the need for power ...